Aron Laszka is an Assistant Professor in the College of Information Sciences and Technology at the Pennsylvania State University. Previously, he was an Assistant Professor at the University of Houston, a Research Assistant Professor at Vanderbilt University, and a Postdoctoral Scholar at the University of California, Berkeley.
His research interests revolve around artificial intelligence and cyber-physical systems, focusing on machine learning for decision making and optimization, with applications in smart and connected communities, critical infrastructure, and cybersecurity.
His research is funded in part by the National Science Foundation, the Department of Energy, the Department of Transportation, and other agencies.
Machine Learning, Optimization
Transportation, Power Systems, IoT
Decision Support, Data Analytics
This project aims to revolutionize public transportation in mid-sized cities, such as Chattanooga, TN, by creating a seamlessly integrated, multi-modal transportation network that is both attractive to passengers and financially viable.
This Civic Innovation Challenge (CIVIC) Stage 1 project will perform research that attempts to address transportation challenges faced by residents and workers in rural areas around industrial hubs. Rapid economic growth in these areas demands efficient public transit systems that can serve a geographically dispersed workforce with strict arrival times.
Food insecurity is the lack of consistent and reliable access to nutritious food. In the Houston (Texas) area, over 14% of Harris County households experienced food insecurity before the emergence of COVID-19.
This Houston-based project establishes a collaborative process with community and commercial technology partners to accelerate the equitable development of accessible fast charging infrastructure and electric vehicle (EV) ownership for low income families by leveraging regional markets of early EV adopters.
In every public transit system, a trade-off has to be made between concentrating service into very useful routes that serve large numbers of people and spreading service out to ensure that people everywhere have access to at least some service.
Public transportation infrastructure is an essential component in cultivating equitable communities. However, public transit agencies have historically struggled to achieve this since they are often severely stressed in terms of resources as they have to make the trade-off between concentrating service into routes that serve large numbers of people and spreading service out to ensure that people everywhere have access to at least some service.
The COVID-19 pandemic has not only disrupted the lives of millions but also created exigent operational and scheduling challenges for public transit agencies. Agencies are struggling to maintain transit accessibility with reduced resources, changing ridership patterns, vehicle capacity constraints due to social distancing, and reduced services due to driver unavailability.
This project studies the following research topics: Security of blockchain-based consensus protocols Secure smart contracts Applications of blockchains
Many organizations and companies have recently chosen to use so-called bug-bounty programs (also known as vulnerability reward programs), which allow outside security experts to evaluate the security of an organization’s products and services and to report security vulnerabilities in exchange for rewards.
The goal of this project is to develop a high-resolution system-level data capture and analysis framework to revolutionize the operational planning of a regional transportation authority, specifically the Chattanooga Area Regional Transportation Authority (CARTA).
Due to rapid growth in renewable energy resources and improvements in battery technology, power grids are undergoing major changes, which create significant management and control challenges. To tackle these challenges, decentralized solutions are needed, which can support the evolution of electrical power distribution systems.
The adoption of blockchain based distributed ledgers is growing fast due to their ability to provide reliability, integrity, and auditability without trusted entities. One of the key capabilities of these emerging platforms is the ability to create self-enforcing smart contracts.