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Abstract—The rapid growth of urban populations and the
increasing need for sustainable transportation solutions have
prompted a shift towards electric buses in public transit systems.
However, the effective management of mixed fleets consisting of
both electric and diesel buses poses significant operational chal-
lenges. One major challenge is coping with dynamic electricity
pricing, where charging costs vary throughout the day. Transit
agencies must optimize charging assignments in response to such
dynamism while accounting for secondary considerations such
as seating constraints. This paper presents a comprehensive
mixed-integer linear programming (MILP) model to address
these challenges by jointly optimizing charging schedules and
trip assignments for mixed (electric and diesel bus) fleets
while considering factors such as dynamic electricity pricing,
vehicle capacity, and route constraints. We address the potential
computational intractability of the MILP formulation, which
can arise even with relatively small fleets, by employing a
hierarchical approach tailored to the fleet composition. By using
real-world data from the city of Chattanooga, Tennessee, USA,
we show that our approach can result in significant savings in
the operating costs of the mixed transit fleets.

Index Terms—Mixed transit fleet, electrification, dynamic
pricing, hierarchical MILP

I. INTRODUCTION

As global concerns about climate change and sustainable
energy continue to grow, the transition to electric buses in
public transportation systems has become a crucial strategy
in reducing greenhouse gas emissions and promoting sustain-
able urban mobility [1], [2]. However, the transition has been
slow due to the vast difference in cost between electric and
diesel-powered buses, e.g., while a diesel transit bus costs
about $500,000, electric buses cost more than $750,000 [3].
As a result, most transit agencies operate mixed fleets, which
allows them to slowly supplement their existing fleet with
electric vehicles, leading to a fleet that has both diesel and
electric vehicles and may also consist of hybrid vehicles.

As the transit agencies increase the ratio of electric buses
in their fleet, they face challenges not only in deciding which
bus should be used on what trips but also in managing when
the EVs charge; this problem is particularly taxing due to
the comparatively shorter range of electric buses, which is
affected by weather and traffic. Moreover, optimizing such
fleets must be done while ensuring that routes are served reli-
ably without delays and accommodating all commuters, such
as having seating requirements. Another unique challenge
faced by electric fleets is dynamic electricity pricing [4]. The
cost of purchasing electricity varies over time for commercial

customers such as transit agencies, with significant variability
within each day. Dynamic electricity pricing usually consists
of a Time-of-use (TOU) based price [5]. The usage charge
typically varies over smaller temporal granularity such as a
day, while the demand charge is aggregated over a longer
duration such as a month. As a result, ad-hoc charging
strategies can be costly, thereby making it imperative for
agencies to plan ahead. Diesel prices exhibit significantly
lesser variance within a day, and transit agencies do not incur
any demand-based charges for the fuel.

The problem of optimal charging assignment for electric
vehicles has been studied, e.g., there is extensive prior work
on vehicle assignment to trips by considering capacities and
availability of charging infrastructure [6]–[9]. However, to
the best of our knowledge, there is no prior work on the
significantly more complex problem of integrating all the
nuances of mixed-fleet transit, such as dynamic electricity
pricing and seating constraints, while optimizing traditional
transit objectives such as assigning mixed fleets to trips
on fixed lines. We reiterate that the assignment problem is
itself challenging, given the concerns about the driving range
and battery capacity of EVs. In this paper, we present a
problem formulation that explores these unique challenges
in collaboration with a public transit agency of a medium-
sized city in the U.S.A. Our partner agency operates both
electric and diesel buses, serving about 200,000 residents.
Contributions: Our formulation is inspired by prior work by
Sivagnanam et al. [6], but we make three major contributions.

1) We extend the formulation from [6] to enable us to
focus on both the objectives of energy consumption as
well as the efficient trip assignment while adhering to
the operational constraints of charging and vehicle range.
Our formulation balances the twin objectives of energy
consumption and efficient trip assignment while adhering
to the operational constraints of charging and vehicle
range.

2) We incorporate seating restrictions that may apply on a
given transit block as the transit agency might have re-
quirements of assigning specific capacity buses on certain
blocks, due to local rules, or known mobility issues with
the people being served by the buses.

3) Existing exact solution approaches are intractable in prac-
tice. Heuristic solutions can scale, but they can sacrifice
performance. We demonstrate that unlike an approximated
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simulated annealing approach as described in [6], we can
solve the problem with better results using a hierarchical
approach where we iteratively solve related Mixed Integer
Linear Programming (MILP) problems, describing the
decomposition technique and other computational ap-
proaches to make it more tractable (e.g. the warm start
to the solution).

Our approach aims to provide a near-optimal solution
while maintaining the feasibility of the solution. This ap-
proach not only enhances the practicality of fleet management
strategies but also paves the way for more sustainable and
economically feasible public transportation systems. Using
our method, we show an average improvement of 2.58% in
operational cost over the foundational work of Sivagnanam
et al. [6], and an average 6.25% improvement over the actual
operational cost that the transit agency currently incurs.

II. RELATED RESEARCH

The shift towards electrification in public transit is driven
by the urgent need to reduce greenhouse gas emissions and
enhance urban air quality. Studies have extensively compared
the environmental impact and lifecycle costs of electric ver-
sus diesel buses, highlighting the long-term benefits despite
higher initial costs [10], [11] and underlining the sustainabil-
ity advantages of electric buses, helping meet climate goals.
However, the operational challenges posed by electric buses
remain a significant concern for transit agencies, showing
a need for enhanced management strategies to ensure a
smoother transition.

Optimization of fleet operations has been a critical focus
area, with several studies on efficiently managing mixed fleets
of electric and diesel buses. There have been discussions on
optimization approaches for vehicle assignment considering
the availability of charging infrastructure and the constraints
imposed by battery limits [6], [12]. Similarly, Hu et al. [7]
explore algorithms that optimize the scheduling of electric
buses to maximize operational efficiency while minimizing
charging times and costs. These models are foundational,
however, they often overlook the complexities introduced by
dynamic electricity pricing, significantly altering the cost-
benefit landscape.

Dynamic electricity pricing presents a unique challenge
for electric bus operations. The variability in electricity costs
due to Time-of-use (TOU) can greatly influence charging
strategies. Hao et al. provide a comprehensive review of how
dynamic pricing affects large-scale consumers like transit
agencies, emphasizing the need for advanced planning and
real-time decision-making frameworks [13]. It has also been
studied in the context of personal electric vehicle charging
[14]. Despite the insights offered by these studies, there is a
notable gap in research regarding the integration of dynamic
pricing models into the operational strategies of mixed-fleet
transit systems, which our research aims to address.

Hierarchical optimization techniques, particularly hierar-
chical MILP, have been successfully applied in various

industrial and systems engineering contexts to decompose
complex decision-making problems into more manageable
sub-problems. This method allows for detailed planning at
different decision levels, facilitating nuanced control over
complex systems with multiple interacting components. For
instance, in the context of logistics and supply chain man-
agement, hierarchical MILP has been used to optimize re-
source allocation and electrical load management [15] [16],
cooperative vehicle networks [17]. Although hierarchical ap-
proaches have been hinted at in transportation literature [18],
their application has predominantly been limited to simpler
scenarios that do not account for the dynamic and multi-
faceted challenges presented by mixed-fleet transit systems
under variable pricing conditions.

Existing literature extensively explores separate elements
of fleet optimization, dynamic pricing impacts, and the po-
tential of hierarchical MILP approaches. However, it often
overlooks the integration of these elements into a cohesive
model tailored for mixed-fleet transit operations. Our research
bridges this gap by adapting hierarchical MILP to handle
the intricacies of mixed-fleet management under dynamic
pricing conditions, incorporating operational constraints like
vehicle range, battery limitations, and seating capacities. This
novel application extends previous optimization frameworks
and introduces a multi-layered decision-making structure
that aligns with the operational realities of modern transit
agencies.

III. PROBLEM MODEL

Vehicles Our area of consideration is a transit agency
that operates a set of buses V , where each bus v ∈
V belongs to a vehicle model Mv ∈ M = Mdiesel ∪
Melectric . Each vehicle model has a state of charge (SoC)
between

[
Mv

min,Mv
max

]
. Each vehicle also has an oper-

ating efficiency vop, the average energy used per mile. We
consider hybrid buses under the setMdiesel as they use diesel
fuel, and do not require charging. Hybrid buses have higher
vop than regular diesel buses, and electric buses have the
highest efficiency. We use an operating efficiency threshold
vopth to form the hierarchical formulation. Each vehicle has a
seating capacity of vs seats.
Locations Locations L include terminals (with charging
stations), bus stops, and additional charging stations in the
transit network.
Transit blocks are a fundamental concept in transit oper-
ations management, encompassing a set of sequential trips
assigned to a single vehicle for a day of operation. The use
of transit blocks helps optimize vehicle and driver scheduling
to operate efficiently and reliably, by minimizing vehicle
downtime, reducing operational costs, and streamlining the
planning process. A bus serving a block t ∈ T leaves from
the block origin torigin ∈ L at time tstart and arrives at
destination tdestination ∈ L at time tend. The distance it covers
is td. Each block may require the buses to have a minimum
number of seats, denoted by ts.
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Charging rate It is the amount of power delivered to the
electric buses, measured in terms of kilowatt-hour (kWh).
Each charger has a specified minimum charging limit of 0
kWh and a maximum charging limit qmax kWh. We assume
all chargers here are unidirectional, but this formulation
can be easily extended to the use of bidirectional chargers,
changing the minimum to be negative (qmin kWh, qmin < 0).
Time slots We denote uniform-length time slots using S,
which are used to divide the operational hours into different
discrete intervals and are used for both block and charging
assignment. A time slot s ∈ S begins at sstart and ends
at send . The very last time slot of the day is denoted by
slast and is used to replenish the vehicles to their maximum
capacity. We assume this is the downtime after a day’s
operation, having no more blocks to serve and this time slot
can continue till the start of the next day’s operations.
Charging We denote the set of charger poles CP , where
cplocation ∈ L is the location of charging pole cp ∈ CP .
Charging times can start and end only at the start and end
of each time slot. A charging pole cp ∈ CP can provide
up to qmax

cp amount of energy to an electric bus v at time
slot s, denoted by cvs . We assume this amount of charge is
uniformly fed to the bus over the entire duration of the slot.
Let C = CP ×S be the set of all charging slots. We assume
that the buses are fully charged and fuelled at the start of the
day, and at the end of the day, we replenish them back to
full capacity.
Non-service trips Besides serving transit blocks, buses may
also need to drive between blocks or charging poles. For
example, if a bus has to serve a block that starts from a
location different from the previous block’s destination, the
bus first needs to drive to the origin of the subsequent block.
An electric bus may also need to drive to a charging pole
after serving a transit block to recharge, then drive from the
pole to the origin of the next transit block. We will refer to
these trips, which are driven outside of revenue service, as
non-service trips. T (l1, l2) denotes the non-service trip from
location l1 ∈ L to l2 ∈ L; and D (l1, l2) denotes the time
duration of this non-service trip.
Energy usage The energy used for every transit block or
non-service trip is denoted by E(v, t) ∀t ∈ T , v ∈ V .
Distance traveled The distance traveled by a vehicle for
a non-service trip between blocks or chargers x1, x2 is
represented using ∆(x1, x2).
Time-of-Use electricity price We opt to use Time-of-Use
pricing to formulate this model, with multiple pricing tiers,
{w1, w2, · · ·wn} ∈ W where ws is the electricity price per
kWh during the time slot, s.
Operating cost We need to recharge electric buses and refuel
the diesel buses to replenish them. We use the common herm
replenish to refer to both recharging and refueling of electric
and diesel use respectively. The variable gs represents the
cost of replenishing a bus during time slot s.

∑
s gs gives

the total operating cost.

A. Solution Space

Assignments A is the set of solutions, where for each
block t ∈ T , exactly one bus v ∈ V is assigned to serve block
t, such that ⟨v, t⟩ ∈ A. Also, each electric bus v must be
charged before its battery state of charge drops below the safe
level for operation, Mv

min. At most one electric bus v can
be assigned to one charging slot (cp, s) ∈ C and is denoted
as ⟨v, (cp, s)⟩ ∈ A. We consistently use the assumption that
an electric bus remains at the charging pole for the entire
duration of the charging slot, and is charged at a uniform
rate for the entire time slot.

Feasibility Constraints If a bus v is assigned to serve an
earlier transit block t1 and a later block t2, then the duration
of the non-service trip from tdestination

1 to torigin
2 must be less

than or equal to the time between tend
1 and tstart

2 . Otherwise,
it would not be possible to serve t2 on time. We formulate
this constraint as:

∀t1, t2 ∈ T ; tstart
1 ≤ tstart

2 ; ⟨v, t1⟩ ∈ A; ⟨v, t2⟩ ∈ A :

tend
1 +D

(
tdestination
1 , torigin

2

)
≤ tstart

2

If the constraint is satisfied by every pair of consecutive
blocks assigned to a bus, then it is also satisfied by every
pair of non-consecutive blocks assigned to the bus. We need
to formulate similar constraints for non-service trips to, from,
and between charging slots:

∀t ∈ T ; (cp, s, q) ∈ C; tstart ≤ sstart ; ⟨v, t⟩, ⟨v, (cp, s, q)⟩ ∈ A :

tend +D
(
tdestination , cplocation

)
≤ sstart

∀t ∈ T ; (cp, s, q) ∈ C; tstart ≥ sstart ; ⟨v, t⟩, ⟨v, (cp, s, q)⟩ ∈ A :

send +D
(
cplocation , torigin

)
≤ tstart

∀ (cp1, s1, q1) , (cp2, s2, q2) ∈ C; sstart ≤ sstart ;

⟨v, (cp1, s1, q1)⟩ , ⟨v, (cp2, s2, q2)⟩ ∈ A :

send
1 +D

(
cplocation

1 , cplocation
2

)
≤ sstart

2

The above four equations are collectively represented using
F (x1, x2), which form the feasibility checks.

B. Objective
This objective equation represents a minimization problem

in which the goal is to minimize the total cost of replenishing
the buses.

min
∑
s∈S

gs (1)

The equation consists of two main components:
Recall

∑
s∈S gs, represents the total cost of recharging and

refueling the buses. By minimizing this sum, we can find the
optimal bus assignment that minimizes the overall cost of
replenishing the buses.

IV. HIERARCHICAL APPROACH

We employ mixed-integer linear programming (MILP) to
address the complexities of mixed bus fleet management,
capturing various factors and constraints and providing a
comprehensive and flexible framework for optimizing the
integration of multiple kinds of buses in a fleet. Sivagnanam
et al. [6] try to address the version of the problem without
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dynamic charging by minimizing the cost for all of the transit
trips and non-service trips. Even state-of-the-art approaches
do not scale for more than a few buses and a few transit
trips (or transit blocks) per day when solving this MILP.
To address this issue, we divide the problem into parts,
by trying to assign buses to blocks hierarchically and by
keeping the objective fairly simple. Our hierarchical approach
enhances computational efficiency and scalability. In practice,
for an NP-hard problem like ours, it’s more feasible to tackle
smaller sub-problems of size n rather than a larger, more
complex problem of size m, especially when n << m. We
generally observe that transit vehicles are of multiple types,
and each of those types has a different operating efficiency.
The hierarchical solution hinges on the fact that increasing
the use of more efficient buses (like electric buses) decreases
the overall cost of operations, as they cost less per mile.
The hierarchy is ordered using vop, and we use the operating
efficiency threshold vopth to divide the problem as follows:
1) Level 1 We first attempt to assign the maximum blocks

using buses which have vop ≥ vopth (usually, electric
buses).

2) Level 2 Buses that have vop < vopth (usually hybrid and
diesel buses) are used next to serve the remaining blocks.

We could add more levels to the hierarchy based on
multiple operating efficiency thresholds (for example, when
using many types of electric buses with high variance in
operating efficiency), but we refrain from doing so in our
scenario.
Variables We use two sets of binary variables and five
sets of continuous variables. The first binary set, av,t = 1
indicates that block t is assigned to bus v, and av,(cp,s) = 1
indicates electric bus v is assigned to charging pole cp at
slot s. The second binary set, mv,x1,x2

= 1 indicates that
bus v takes the non-service trip between a pair of transit
blocks or charging slots, x1 and x2. We have five sets of
continuous variables, cvs ∈ [0,Mv

max] represents the amount
of energy charged to electric bus v in time slot s. The second
continuous variable set denotes the state of charge (SoC) of
buses, evs ∈

[
Mv

min,Mv
max

]
which is the battery level for

electric buses and the fuel remaining for diesel buses. The
continuous variable set, gs represents the recharging cost for
the slot s. The two continuous variables δv and ut represent
the distance covered by each bus, and the slack for each block
assignment (the number of blocks unserved) respectively.

A. Level 1

We solve Level 1 of the problem using the following
constraints.
Constraints Every transit block is served by exactly one bus:

∀t ∈ T :
∑
v∈V

av,t + ut = 1 (2)

Each bus should be used to its full potential when trying
to serve the blocks, where td is the transit block distance:

∀v ∈ V : δv =
∑
t∈T

av,t · td (3)

Each charging slot is assigned at most one electric vehicle:

∀(cp, s) ∈ C :
∑

∀v∈V:Mv∈Melec

av,(cp,s) ≤ 1 (4)

To ensure the converse of Eq 4, that, one vehicle is not
assigned to the multiple charging poles in the same slot:

∀v ∈ V : Mv ∈ Melec , ∀s ∈ S : ∑
∀cp∈CP

av,(cp,s) ≤ 1 (5)

We use F (x1, x2) as described above in Section III-A to
check for feasibility involving the movement between two
blocks x1, x2 . The following constraint represents block
feasibility:

∀v ∈ V, ∀x1, x2 ∈ T ∪C,¬F (x1, x2) : av,x1 +av,x2 ≤ 1 (6)

When a bus v is assigned to a pair of blocks or charging
slots x1 and x2, and if x1 and x2 are consecutive assignments,
then bus v needs to take a non-service trip:

∀v ∈ V, ∀x1, x2 ∈ T ∪ C, F (x1, x2) :

mv,x1,x2 ≥ av,x1 + av,x2 − 1−
∑

x∈T ∪C:xstart
1 ≤xstart,xend≤xstart

2

av,x

(7)

mv,x1,x2 ≤ av,x1 , mv,x1,x2 ≤ av,x2 (8)

Equation (8) is used to limit the non-service trips to occur
only between the blocks or charging slots the buses are
assigned to.

The amount of energy charged to the vehicle v, at charging
pole cp, is at a uniform rate of charge cvs throughout the
period of charging. We also ensure that the battery levels of
electric buses remain between Mmin

v and Mmax
v . Thus, for

each electric bus v in a slot s, the energy charged, cvs is,

∀v ∈ V, s ∈ S : cvs ≤
∑

(cp,s)∈C

qmax
cp · av,(cp,s) (9)

Next, we include the cost of recharging the vehicles, which
can be affected by the dynamic electricity prices:

∀s ∈ S, gs = ws ·
∑
v∈V

cvs (10)

For all diesel vehicles, Mv ∈ Mdiesel, cvsn = 0.
Since evs ∈

[
Mv

min,Mv
max

]
, it is ensured the bus never runs

out of charge and recall, that we represent the amount of energy
used to move between x1, x2 by E (v, T (x1, x2)). For the first
time slot, n = 0, ev0 = Mv

max. For any other nth time slot sn,
and for a bus v, we can find the amount of energy remaining evsn ,
as

∀v ∈ V, s ∈ S :

evsn = evsn−1
+ cvsn −

∑
t∈T :sstart

n <tend ≤send
n

av,t · E(v, t)

−
∑

x1,x2:sstart
n <xstart

2 ≤send
n

mv,x1,x2 · E (v, T (x1, x2)) (11)

To find the cost of replenishing the buses, we find the
energy left at the end of all transit blocks (at the last slot
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of the day, slast) and replenish each vehicle to its maximum
capacity:

gslast =
∑

v∈V:Mv∈Melec

(Mv
max − evslast

) · wslast

+
∑

v∈V:Mv∈Mdiesel

(Mv
max − evslast

) ·Kdiesel (12)

where Kdiesel is the cost of diesel per gallon.
To ensure seating capacity constraints on a block are met:

vs ≥ ts (13)

Objective We maximize the distance covered by the more
efficient buses, maximizing δv the distance covered by them.

max
∑
v∈V

δv (14)

B. Level 2

In this level, we assign buses below vopth to all the transit
blocks that remain after Level 1 assignments are done, while
minimizing energy use. Here, we can reduce the variables
and constraints needed, and the problem becomes simpler.
Variables We use all variables except two, the slack variable
ut as we assign all blocks to a bus, and δv which was used
to measure distance traveled by a bus.
Constraints We modify Eq. (2) to assign buses to all blocks
and ensure feasibility:

∀t ∈ T :
∑
v∈V

av,t = 1 (15)

Eq 3 is no longer required as we do not need to maximize
the distance. We use the other constraints (4) to (13).
Objective We modify the objective completely to align with
reducing the operating costs. Thus, we minimize the total
replenishing cost.

min
∑
s∈S

gs (16)

C. Maintaining Feasibility

We also need to check and maintain the feasibility of the
solution using the hierarchical approach. A solution set could
become infeasible when solved using strict hierarchical rules.
For example, say we have a problem set with 4 transit blocks
(t1, t2, t3), all starting at the same time, and t4 starting just
after the end of the previous transit blocks and from the
same location. The fleet is made up of 2 electric buses and
1 diesel bus. Say, t1, t4 are ∆1 in length, while the other
transit blocks are ∆2 in length, where ∆1 > ∆2. Also, the
electric buses cannot serve t1 and t4 consecutively due to
battery constraints. Now, in the hierarchical solution, since
we maximize the distance covered by electric buses, they will
be assigned to t1 and t4, leaving t2, t3. 1 diesel bus cannot
serve both blocks at the same time, making it infeasible.
Whereas, if all the buses and blocks are considered together
and solved non-hierarchically, we find a feasible solution
where electric buses serve t1, t3 and t2, t4 are served by
the diesel bus. Again, these issues can occur only in very
specific scenarios and are not common, as we show in our
experiments.

Algorithm 1 Hierarchical Iteration Algorithm

1: function HIERARCHICAL ITERATION(T ,V, C)
2: feas← True
3: V1 ← {v ∈ V :Mv ∈Melec}
4: V2 ← {v ∈ V :Mv ∈Mdiesel}
5: while feas do
6: A1 ← Level 1(T ,V1, C); T ′ ← T \ {t ∈ A1}
7: A2 ← Level 2(T ′,V2, C)
8: V1 ← V1 \ {v̂}; V2 ← V2 ∪ {v̂}
9: feas← feasible(A2)

10: return A1 ∪ A2

To achieve feasibility, we introduce an iterative process
to the solution method. We solve the problem using the
hierarchical method described above and then check the
feasibility of the solution. If feasible it is accepted. If not
feasible, we remove one of the least efficient buses from
Level 1 and add it to Level 2. This process continues till we
get a feasible solution. If all buses are removed from Level
1 to Level 2, the problem becomes a non-hierarchical MILP,
where feasibility is guaranteed, provided there are enough
buses to serve the blocks. Algorithm 1 shows this process.

D. Warm start using initial solution

To speed up the Hierarchical solution we form a Greedy
approach that can be used to provide an initial set of solutions
for warm starting. The greedy solution can provide a good
approximation to the optimal solution, giving the solver a
good solution to start with which can help in finding or get
near the optimal solution quicker.

Algorithm 2 CanServe Algorithm

1: function CANSERVE(A, T , C, v, x)
2: if {x ∈ T ∪ C|⟨v, x⟩ ∈ A} then
3: Previous ← {x̂ ∈ T ∪ C|⟨v, x̂⟩ ∈ A ∧ x̂end ≤

xstart}
4: if Previous ̸= ∅ then
5: xprev = argmaxx̂∈Previousx̂

end

6: if xend
prev +D(x1, x2) ≥ xstart then

7: return False
8: else
9: return evs − E(v, t) ≥Mv

min

CanServe Algorithm: The Algorithm 2 determines if a
given bus can serve a particular block. It checks if the bus
can serve the current transit block t based on its previous
assignments while ensuring it has enough energy to serve
the current block t. The computational complexity of the
CanServe Algorithm is O(1).

BiasedCost Algorithm: Algorithm 3 calculates the biased
cost of assigning a block to a bus based on various factors.
The algorithm considers the energy required to serve the
transit block and the cost of a non-service trip from a previous
block. The movement time is modified by the Wait Penalty,
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Algorithm 3 BiasedCost Algorithm

1: function BIASEDCOST(A, T , C, v, x, wp)
2: Previous← {x̂ ∈ T ∪ C|⟨v, x̂⟩ ∈ A∧ x̂end ≤ xstart}
3: After ← {x̂ ∈ T ∪ C|⟨v, x̂⟩ ∈ A ∧ x̂start ≥ xend}
4: if Previous ̸= ∅ then
5: xprev = argmaxx̂∈Previousx̂

end

6: mprev = T (xdestination
prev , xorigin)

7: if After ̸= ∅ then
8: xprev = argmaxx̂∈Afterx̂

end

9: mprev = T (xdestination, xorigin
prev )

10: g ← E(v, t) + E(v,mprev) + wp · (xstart − xend
prev)

11: return g

wp, which helps to prioritize assigning buses that have to
travel a shorter time to get to and from a block. The biased
cost is the sum of the energy used for transit block, non-
service trip, and the wait penalty (wp). The complexity of
the BiasedCost Algorithm is O(1).

Algorithm 4 Greedy Assignment Algorithm

1: function GREEDYASSIGNMENT(T ,V, C, wp)
2: A ← ∅
3: for t ∈ T do
4: F ← {v ∈ V|CanServe(A, T , C, v, t)}
5: v̂ ← argminv∈F BiasedCost(A, T , C, v, t, wp)
6: if v̂ ̸= ∅ then
7: A ← v̂
8: if v̂ ∈Melec & ev̂s − E(v̂, t) ≤ Vth

Mv
then

9: for (cp, s) ∈ C do
10: if s ≥ tend then
11: evs = evs + qmax

cp · (send − sstart)

Greedy Algorithm: The Greedy Assignment Algorithm 4
efficiently assigns transit blocks to the available buses in the
fleet, considering the energy consumption and charging re-
quirements. We provide it with the fleet composition (V), the
set of charging slots (C), and charging rates. The algorithm
iteratively processes each block in the set T , and for each
block, it first determines the set of feasible buses F , found
by using the CanServe Algorithm. BiasedCost is utilized
to identify the bus with the minimum biased cost, v̂, and is
used for serving the block. If the selected bus is an electric
bus and its SoC remaining after serving the block is less
than the minimum SoC, Vth

Mv
a charging slot is assigned

from the set C. The computational complexity of the Greedy
Assignment Algorithm is O(|T | · |V| · |C|), where |T | is the
set of transit blocks, |V| is the bus fleet and —C— is the
set of charging slots. The algorithm is efficient in solving
large-scale problems, very quickly.

V. EXPERIMENTS

A. Data Preparation
We use the transit data from our partner agency, Chat-

tanooga Area Regional Transportation Authority (CARTA)

to perform the experiments. We use their General Transit
Feed Specification (GTFS) to obtain the transit blocks and
their fleet composition. GTFS is a widely adopted data
format used by transit agencies to define and share public
transportation schedules and related geographic information.
It provides comprehensive information about transit routes,
transit blocks, stops, trips, and schedules.

For testing, we use one month of their recent deployment
data from February 2024. During this time, CARTA managed
an average of 430 trips, grouped into 42 blocks, utilizing a
mixed fleet of 31 diesel buses, and 4 electric buses (BYD
K9M model). It is important to note that not all buses were
available every day due to maintenance downtime. The diesel
buses averaged a fuel consumption of 2.53 miles/gal, whereas
the electric buses averaged 0.56 miles/kWh. We use the
U.S. Energy Information Administration (EIA) 1 estimated
conversion rate of 1 gal of diesel = 37.1 kWh to compare and
compute the usage of electric and diesel bus. We set diesel
costs at $4.2/gal and utilized CARTA’s actual bus usage data
for each day of February for our simulations. The BYD K9M
electric buses in CARTA’s fleet have a battery capacity of 310
kWh, and the 2 chargers are located at the central depot, with
a maximum charging rate of 80 kWh.

Since Chattanooga uses a uniform cost of electricity, we set
the electricity price at $0.12795/kWh. For other experiments,
we use a time-of-use price, where the peak hours (6am to
10pm) are at $0.14660/kWh, and the off-peak hours (time
outside peak hours) are priced at $0.12795/kWh. We set
vopth = min (vop) ∀v ∈ V :Mv ∈ Melec, i.e. the minimum
operating efficiency of the electric bus fleet. The minimum
seat requirement for every block is set at 30, and all buses
in CARTA’s fleet have a minimum of 30 seats.

Fig. 1: Comparison of all methods across Feb 2024 for actual block
assignments used by CARTA. With a maximum fleet size of 4
electric and 31 diesel buses, which can vary daily. The electric buses
have a battery capacity of 310 kWh, and 2 chargers with a maximum
charging rate of 80 kWh. We compare the operational cost for the
Hierarchical and the baseline models. Hierarchical provides the best
operational cost for all days

1https://www.eia.gov/energyexplained/units-and-calculators/energy-
conversion-calculators.php
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Fig. 2: Effect of changing the number of electric buses for 2024-02-
16, which has 47 blocks. The number of diesel buses are decreased
proportionately to maintain a total available fleet size of 27

B. Baselines

We refer to our proposed algorithm as Hierarchical, and
use the following baselines for comparison.
Actual cost: The actual operational cost incurred by CARTA
for the day’s service, based on the buses deployed to specific
transit blocks, using the average efficiency metric of the buses
as described above.
Greedy: The Greedy assignment as described in section
IV-D assigns buses based on a first-come-first-serve basis,
prioritizing electric buses over diesel buses. we use waiting
penalty, wp = 0.001, and the SoC threshold Vth

Mv
=

0.5 · Mmin
v ∀v ∈ V : Mv ∈ Melec . We choose half of

the maximum capacity to be a threshold for charging as a
precaution, as we do not want the buses to go below their
minimum allowable charge Mmin

v .
Assign-at-once: Solving only using Level 2 of the hierarchi-
cal solution described in Section IV. It is a one-step solution
to the problem, proposed above. We use the Greedy solution
as an initial solution to warm start it - which helps improve
the solution search time.
Opt-SA: This state-of-the-art baseline is the simulated an-
nealing solution implemented by Sivagnanam et. al [6], which
uses a greedy initial solution and follows the simulated
annealing method to swap blocks to reduce operational costs.
As used by the author, an iteration limit of 40000 for the
algorithm, along with the other parameters.

C. Multiple Days Analysis

We use an off-the-shelf MILP solver — CPLEX [19] to
solve all the MILPs. The MILP solving times are limited to
a maximum time of 15 minutes. 15 minutes proved to be
sufficient for use, as we obtained an average relative gap of
0.1%. Using Fig. 1 we analyze bus deployment from Feb
1 to Feb 29, 2024, and evaluate Actual Cost, Greedy, Opt-
SA, Assign-at-once, and Hierarchical solution methods. The
Hierarchical method produces the least operational cost while
maintaining feasible solutions. On average, the proposed
hierarchical solution is better than the actual cost of CARTA
by 6.25%, and 2.65% better than Opt-SA. In the best case,
it outperforms Opt-SA by 8.37%, and the actual cost of
CARTA by 15.37%.

D. Impact of Increasing Electric Vehicles (EVs)

With the increasing electrification of vehicles, we attempt
to estimate the possible savings we can get by having electric
buses form a larger portion of the transit fleet. We measure
the impact of increasing electric bus numbers on operational
costs in Fig. 2 on a day’s assignment (Feb 16, 2024) as it has
operational costs close to the mean operational cost for the
month. As we can see, the operational costs are reduced sig-
nificantly when using electric buses and significantly reduce
tailpipe emissions. Compared to a fleet with 2 electric buses,
a fleet with 14 electric buses saves $1009.08 in operational
cost, and 25.64 metric tons of CO2 emissions daily according
to U.S. Environmental Protection Agency (EPA) Greenhouse
Gas Equivalencies.2

Fig. 3: Effect of changing the electric bus battery capacity on the
operational cost

Fig. 4: Effect of changing the maximum charging rate of the
chargers on the operational cost

Fig. 5: Effect of changing the diesel cost per gallon on the diesel
bus usage (in terms of gallons used). The operational cost increases
due to the increase in diesel cost.

E. Sensitivity Analysis

We test the sensitivity and adaptability of the Hierarchical
model to changes in key parameters such as battery limits
in Fig. 3, maximum charging rate in Fig. 4, Fig. 7 for
seats available and Fig. 5 for diesel price changes. All the

2https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-
calculations-and-references
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experiments for sensitivity analysis are done on CARTA’s
actual assignments for Feb 16, 2024, which has 47 blocks
and uses 4 electric and 23 diesel buses and has an operational
cost close to the mean operational cost for the month. In
Fig. 6 we also observe that performing a warm start (using
the Greedy solution) reduces the operational cost, given the
same time limits. The use of Time-of-Use price causes a
minor increase in the operational cost, as the electric buses
will try to recharge during the peak hours, to cover more
distance, incurring a higher electricity cost.

Fig. 6: Operational cost decreases when using Greedy solution for
warm start against when it is not used. Similarly, we show the
difference when the Time-of-Use price is used compared to when
it is not used.

Fig. 7: Effect of changing the seats in electric buses for 2024-02-16,
which has a minimum requirement of 30 seats on all blocks

VI. CONCLUSION

We present a novel formulation for optimizing public
transit fleets on fixed lines under dynamic grid pricing
and seating constraints, using a hierarchical approach. This
method demonstrates superior performance over single-stage
solutions and heuristic-based methods like simulated an-
nealing by strategically prioritizing higher operational and
fuel efficiency buses and adopting a two-step (or multi-step)
resolution process. We also leverage the use of a Greedy
initial solution to enhance solution quality within limited
solving time. Our findings demonstrate how transit agencies
can alleviate the complex challenge of managing mixed fleet
transit infrastructure, and better manage their operations.
We provide a daily average saving in operational costs of
$275.24 and an estimated reduction of 3.05 metric tons of
CO2 in tailpipe emissions every day (according to U.S. EPA
greenhouse equivalents) compared to existing schedules used
by our partner transit agency CARTA.
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