
VERISOLID:  
Correct-by-Design Smart Contracts for Ethereum

Anastasia Mavridou1, Aron Laszka2, Emmanouela Stachtiari3, Abhishek Dubey4

1 NASA Ames

2 University of Houston

3 Aristotle University of Thessaloniki

4 Vanderbilt University

�1

Smart Contracts on Blockchains

• Smart contract: 
general purpose computation on a blockchain (or other distributed
ledger) based computational platform

• Recently popularized by Ethereum
• smart contracts may be developed using high-level languages, such as Solidity

• enables the creation of decentralized applications

• Envisioned to have a wide range of applications
• financial (self-enforcing contracts)

• Internet of Things

• decentralized organizations

• …

�2

Smart Contracts on Blockchains

• Smart contract: 
general purpose computation on a blockchain (or other distributed
ledger) based computational platform

• Recently popularized by Ethereum
• smart contracts may be developed using high-level languages, such as Solidity

• enables the creation of decentralized applications

• Envisioned to have a wide range of applications
• financial (self-enforcing contracts)

• Internet of Things

• decentralized organizations

• …

�3

Smart Contract Security in Practice

• Notable incidents (amounts vary over time with variations in exchange rate)
• The DAO attack: ~$500 million taken

• Parity wallet freeze: ~$70 million frozen

• Parity wallet hack: ~$21 million taken

• Recent analysis: 34,200 contracts (out of 1M publicly deployed
contracts) have security issues / vulnerabilities1

• Distributed ledgers are immutable by design
• smart contract vulnerabilities cannot be patched*

• erroneous (or malicious) transactions cannot be reverted*

�4

insecurity

1 Ivica Nikolic, Aashish KolluriChu, Ilya Sergey, Prateek Saxena, and Aquinas Hobor, “Finding the greedy, prodigal,
and suicidal contracts at scale,” ACSAC’18.

* without undermining the trustworthiness of the contract / ledger

Securing Smart Contracts

• Vulnerabilities often arise due to semantic gap
• difference between assumptions that developers make about execution semantics

and the actual semantics

• Solidity resembles JavaScript, but it does not work exactly like

• Existing approaches
• design patterns, e.g., Checks-Effects-Interactions

• tools for finding (typical) vulnerabilities

• OYENTE

• MAIAN

• …

• tools for verification and static analysis

• SECURIFY

• RATTLE

• …

�5

Contract Vulnerability Discovery and Verification

�6

Contract
source 

(e.g., Solidity)

Contract
bytecodedevelop deploy

vulnerability discovery, 
verification

vulnerabilities,
violations?

Correct-by-Design Contract Development

�7

Contract
bytecode deployContract

model

feedback

verification

• Advantages of model-based approach
• specification of desired properties with respect to a high-level model

• providing feedback to developer with respect to a high-level model

VERISOLID: Correct-by-Design Smart Contracts

�8

6 Mavridou et al.

Fig. 1. Design and verification workflow.

Fig. 2. WebGME based graphical editor.

Interaction-Priority (BIP) model of the contract (augmented or not) is automat-
ically generated. Similarly, in step 4 , the specified properties are automatically
translated to Computational Tree Logic (CTL). The model can then be verified
for deadlock freedom or other properties using tools from the BIP tool-chain [6]
or nuXmv [9] (step 5). If the required properties are not satisfied by the model
(depending on the output of the verification tools), the specification can be
refined by the developer (step 6) and analyzed anew. Finally, when the devel-

A. Mavridou, 2017

Components
0: input(m,n>0);  
1: while(m != n){
2: if (m > n)
3: m = m - n;
4: else //m < n
5: n = n - m;
6: }
7: //m=n=gcd(m,n)

• Taking a transition
1. is allowed if the guard evaluates to true

2. executes the action

3. updates current state

19

label, [guard], action

0

1

7

3

5

2

in
pu

t
[m

 =
 n

]
[m

 > n]

[m
 <

 n
]

[m != n]

m = m - n

n = n - m

• Formal, transition-system based language for contracts

• each contract may be represented as a transition system

Definition: A smart contract is a tuple
• D custom data types and events

• S states

• SF ⊂ S final states

• s0 ∈ S initial state

• a0 ⊂ initial action

• aF ⊂ fallback action

• V contract variables

• T transitions (names, source and destination states, guards, actions, parameter  

 and return types)

VERISOLID Model

Table 1: Summary of Notation for Solidity Code

Symbol Meaning
T set of Solidity types
I set of valid Solidity identi�ers
D set of Solidity events and custom type de�nitions
E set of Solidity expressions
C set of Solidity expressions without side e�ects
S set of supported Solidity statements

the close transition, which signals the end of the bidding period, if
the associated guard now >= creationTime + 5 days evaluates to
true. To di�erentiate transition names from guards, we use square
brackets for the latter. A bidder can reveal her bids by executing the
reveal transition. The finish transition signals the completion of
the auction, while the cancelABB and cancelRB transitions signal
the cancellation of the auction. Finally, the unbid and withdraw

transitions can be executed by the bidders to withdraw their de-
posits. For ease of presentation, we omit from Figure 3 the actions
that correspond to each transition. For instance, during the execu-
tion of the withdraw transition, the following action is performed
(among others): amount = pendingReturns[msg.sender].

4.2 Formal De�nitions
Let us �rst introduce the grammar of the subset of supported So-
lidity code. Our notation is summarized in Table 1. We let T and IAron: I added

this
Aron: I added
this

denote the set of Solidity types and valid Solidity identi�ers.
We de�ne the set of supported event9 (he�enti) and custom type

(hstructi) de�nitions D as follows:
he�ent i ::= event@identif ier (

�
@t�pe @identif ier

(,@t�pe @identif ier) ⇤
�
?);

hstruct i ::= struct @identif ier { (@t�pe @identif ier ;) ⇤ }

We let E denote the set of Solidity expressions. We let C denote
the following subset of Solidity expressions, which do not have any
side e�ects:

hpure i ::= | h�ar iable i
| @constant
| (hpure i)
| hunar� i hpure i
| hpure i hoperator i hpure i

h�ar iable i ::= | @identif ier
| h�ar iable i . @identif ier
| h�ar iable i [hpure i]

hoperator i ::= == | != | < | > | >= | <=
| + | * | - | / | % | && | ||

hunar� i ::= ! | + | -

VeriSolid supports the following types of statements:
9Informally, events are signals that are �red by a smartcontract and recorded on the
blockchain, providing smartcontracts with a standard way to communicate with the
outside world.

• variable declarations (e.g., int32 value = 0; and address

from = msg.sender;),
• expressions (e.g., amount = balance[msg.sender];

or msg.sender.transfer(amount);),
• event statements (e.g., emit Deposit(amount, msg.sender);),
• return statements (e.g., return; and return amount;),
• if and if ... else selection statements (including if ... else

if ... and so on),
• for and while loop statements,
• compound statements (i.e., { statement1 statement2 ... }).

We de�ne the formal grammar of the subset of supported Solidity
statements S as follows:

hstatement i ::=
| hdeclaration i ;
| @expression ;

| emit @identif ier(
�
@expression

(, @expression) ⇤
�
?);

| return (@pure)? ;
| if (@expression) hstatement i

(else hstatement i)?
| for (hdeclaration i ; @expression ;

@expression) hstatement i
| while (@expression) hstatement i
| { (hstatement i) ⇤ }

hdeclaration i ::= @t�pe @identif ier (= @expression)?

where @expression 2 E is a primary Solidity expression, which
may include function calls, transfers, etc., while @pure 2 C is a
Solidity expression without side e�ects, i.e., an expression whose
evaluation does not change storage, memory, balances, etc.

We chose this subset of Solidity statements to demonstrate our
approach because it includes because all the essential control struc-
tures: loops, selection, and return statements. Thus, it is a Turing-
complete subset, and can be extended in a straightforward manner
to capture all other Solidity statements.

Next, we formally de�ne a contract as a transition system. Aron: Guard
conditions and
return expres-
sions are side-
e�ect free! Do
we want to up-
date the seman-
tics?

Aron: Guard
conditions and
return expres-
sions are side-
e�ect free! Do
we want to up-
date the seman-
tics?

Natassa: Can
you update the
semantics?

Natassa: Can
you update the
semantics?

De�nition 4.1. A transition-system initial smart contract is a
tuple (D, S, SF , s0, a0,aF ,V ,T), where

• D ⇢ D is a set of custom event and type de�nitions;
• S ⇢ I is a �nite set of states;
• SF ⇢ S is a set of �nal states;
• s0 2 S , a0 2 S are the initial state and action;
• aF 2 S is the fallback action;
• V ⇢ I ⇥ T contract variables (i.e., variable names and types);
• T ⇢ I⇥S ⇥ 2I⇥T ⇥C⇥ (T [;)⇥S⇥S is a transition relation,
where each transition 2 T includes:
– transition name tname 2 I;
– source state t from 2 S ;
– parameter variables (i.e., arguments) t input ✓ I ⇥ T;
– transition guard �t 2 C;
– return type toutput 2 (T [;);
– action at 2 S;
– destination state t to 2 S .

5

�9

: subset of Solidity statements

state

implemented as functions in the generated code

Example Model:
Blind Auction Contract as a Transition System

9/22/2017 demo / BIP_test

https://editor.webgme.org/?project=demo%2BBIP_test&branch=master&node=%2Ff%2F1%2FD&visualizer=BIPEditor&tab=1&layout=DefaultLayout&selection= 1/1

cancelABB

withdraw

bid
reveal
[values.length == secret.length]

cancelRB

close
[now > creationTime + 5 days]

unbid

finish
[now >= creationTime + 10 days]

C F

RBABB

�10

VERISOLID Semantics

• We define semantics in the form of Structural Operational Semantics

• Basic transition rule:

• transition t changes ledger state from Ψ to Ψ’ and contract state from s to s’

• We also define semantics for erroneous transitions (e.g., exceptions)
and for supported Solidity statements

• Transitions work “as expected” from a transition system *

* with Solidity-related additions, such as exceptions and fallback functions
�11

VERISOLID Verification

• Instead of searching for vulnerabilities, we verify that a model satisfies
desired properties that capture correct behavior

• Deadlock freedom: contract cannot enter a non-final state in which
there are no enabled transitions

• Safety and liveness properties
• specified using Computational Tree Logic (CTL)

• we provide several CTL templates to facilitate specification

• example:

�12

X cannot happen after Y AG(Y → AG(¬X))
where X and Y can be
transitions or statements

bid cannot happen after close AG(close → AG(¬bid))

VERISOLID Verification Process

• First, transform a contract into an augmented transition system,
which captures behavior using transitions
• based on the formal operational semantics of supported Solidity statements

�13

Augmented transition withdraw

Action of transition withdraw

9/22/2017 demo / BIP_test

https://editor.webgme.org/?project=demo%2BBIP_test&branch=master&node=%2Ff%2F1%2FD&visualizer=BIPEditor&tab=1&layout=DefaultLayout&selection= 1/1

cancelABB

withdraw

bid
reveal
[values.length == secret.length]

cancelRB

close
[now > creationTime + 5 days]

unbid

finish
[now >= creationTime + 10 days]

C F

RBABB

VERISOLID Verification Process

• First, transform a contract into an augmented transition system,
which captures behavior using transitions
• based on the formal operational semantics of supported Solidity statements

• Second, transform an augmented transitions system into an
observationally-equivalent Behavior-Interaction-Priority (BIP) model

• Over-approximation of contract behavior
• satisfied safety properties are satisfied by the actual contract

• violated liveness properties are violated by the actual contract

• Verification using nuXmv model checker

�14

Theorem: The original contract and the corresponding augmented transition system
are observationally equivalent.

satisfied properties + violated properties (with violating transition traces)

7 will eventually happen after 4

deadlock freedom

bid cannot happen after close

withdraw can happen only after finish

…

Verification Examples

• Blind auction

• “King of Ether”

�15

VERISOLID Framework

• Generate equivalent Solidity code from VERISOLID contract models
• based on the formal operational semantics of transitions

• VERISOLID IDE

�16

• integrated graphical
and text editor

• integrated verification
and code generation

Conclusion

• VERISOLID advantages
• high-level model with formal semantics (which are familiar to most developers)

• verification of desired behavior (instead of searching for typical vulnerabilities)

• high-level feedback to the developer (for violated properties)

• Solidity code generation (instead of error-prone coding)

Source code: http://github.com/anmavrid/smart-contracts

Live demo at: http://cps-vo.org/group/SmartContracts 
(requires free registration)

�17

https://github.com/anmavrid/smart-contracts
http://cps-vo.org/group/SmartContracts

 18

Thank you for your attention!

Questions?

aronlaszka.com
alaszka@uh.edu

