VERISOLID:
Correct-by-Design Smart Contracts for Ethereum

Anastasia Mavridou?, Aron Laszka?, Emmanouela Stachtiari®, Abhishek Dubey*

TNASA Ames

2 University of Houston

3 Aristotle University of Thessaloniki
4 VVanderbilt University

Smart Contracts on Blockchains

Smart contract:
general purpose computation on a blockchain (or other distributed
ledger) based computational platform

Recently popularized by Ethereum
-+ smart contracts may be developed using high-level languages, such as Solidity

-+ enables the creation of decentralized applications

Envisioned to have a wide range of applications
- financial (self-enforcing contracts)
- Internet of Things

- decentralized organizations

m fI‘GECOdecamp(ﬁ) EE @ Home News Sport Weather Shop More - Q

c HOME DEV DESIGN DATA | LEARNTO CODE FOI 3 NEWS

~ A hacker stole $31M of Technology
~ Ether—how it happened,
and what it means
for Ethereum

Hack attack drains start-up investment fund

1tiol
m)Nal

5 BUSINESS KLINT FINLEY BUSINESS 06.18.16 04:30 AM
e /£

INSIDER

B ENTERPRISE v f A $50 MILLION HACH JUST -
B Someone deleted some code in a popular USIN¢ SHOWED THAT THE DAO ity
1 cryptocurrency wallet — and as much as 4 ap WAS ALL TOO HUM AN

$280 million in ether is locked up

Becky Peterson O Nov. 7,2017,6:29PM 4 145,211

> of

incecurity
Smart Contract Seeurity in Practice

Notable incidents (amounts vary over time with variations in exchange rate)
- The DAO attack: ~$500 million taken
- Parity wallet freeze: ~$70 million frozen

- Parity wallet hack: ~$21 million taken

Recent analysis: 34,200 contracts (out of 1M publicly deployed
contracts) have security issues / vulnerabilities’

Distributed ledgers are immutable by design
- smart contract vulnerabilities cannot be patched”

- erroneous (or malicious) transactions cannot be reverted*

* without undermining the trustworthiness of the contract / ledger

1 lvica Nikolic, Aashish KolluriChu, llya Sergey, Prateek Saxena, and Aquinas Hobor, “Finding the greedy, prodigal,
and suicidal contracts at scale,” ACSAC’18. 4

Securing Smart Contracts

Vulnerabilities often arise due to semantic gap

- difference between assumptions that developers make about execution semantics
and the actual semantics

- Solidity resembles JavaScript, but it does not work exactly like

Existing approaches

- design patterns, e.g., Checks-Effects-Interactions

- tools for finding (typical) vulnerabilities
- OYENTE
- MAIAN

- tools for verification and static analysis
* SECURIFY
+ RATTLE

Contract Vulnerabllity Discovery and Verification

vulnerabillities,
violations

vulnerabillity discovery,

verification

- e Contract
develop source
(e.g., Solidity) bytecode

Correct-by-Design Contract Development

feedback

verification

Contract Contract
model bytecode

- Advantages of model-based approach
- specification of desired properties with respect to a high-level model

- providing feedback to developer with respect to a high-level model .

VERISOLID: Correct-by-

User Input

—> Smart Contract as
Transition System

Augmented
Transition System

l

Design Smart Contracts

Properties

Solidity Code

Verification
Output

BIP Model

CTL Properties

VERISOLID Model

Formal, transition-system based language for contracts

label, [guard], action
e O

- each contract may be represented as a transition system

Definition: A smart contract is a tuple (D, S, Sk, so, ag,ag,V,T)
- D custom data types and events
- § states
- SFCS final states
- 50 €S Initial state

- C@initial action S: subset of Solidity statements
*ar C@fallback action ;

-V contract variables

- T transitions (names, source and destination states, guardS,” parameter
and return types) ug

= implemented as functions in the generated code

9

—xample Model:
Blind Auction Contract as a Transition System

close reveal

bid ' ABB [now > creationTime + 5 days] [values.length == secret.length]
finish
cancelABB < ncelRB [now >= creationTime + 10 days]

unbid
Qwithdraw

10

VERISOLID Semantics

We define semantics in the form of Structural Operational Semantics

Basic transition rule:
teT, name=t"ome, s=tirom
M = Params(t,vi,ve,...), o= (¥,M)
Eval(o, g:) — ((6,N), true)
((?7» N),ar) = ((6",N),")
A (gp/ M/) S/ _ tto
(¥, s), name (v, vs,...)) = (¥, s, -))

- transition r changes ledger state from ¥ to ¥’ and contract state from s to s’

TRANSITION

We also define semantics for erroneous transitions (e.g., exceptions)
and for supported Solidity statements S

Transitions work “as expected” from a transition system *

* with Solidity-related additions, such as exceptions and fallback functions
11

VERISOLID Verification

Instead of searching for vulnerabilities, we verify that a model satisfies
desired properties that capture correct behavior

Deadlock freedom: contract cannot enter a non-final state in which
there are no enabled transitions

Safety and liveness properties
- specified using Computational Tree Logic (CTL)

-+ we provide several CTL templates to facilitate specification

[X cannot happen after Y) » AG(Y = AG(—X))

where X and Y can be
transitions or statements

- example:

[bid cannot happen after close) » AG(close — AG(-bid))

12

VERISOLID Verification

Process

- First, transform a contract into an augmented transition system,
which captures behavior using transitions

Action of transition withdraw

uint amount = pendingReturns[msg.sender];
if (amount > 0) {
if (msg.sender!= highestBidder)
msg.sender .transfer (amount) ;
else

msg.sender .transfer (amount - highestBid);

pendingReturns [msg.sender] = 0;

}

Qwithdraw

based on the formal operational semantics of supported Solidity statements

Augmented transition withdraw

withdraw ['revert]
withdraw >
= ()
16

{uint amount =
pendingReturns[msg.sender];} | 17

pendingReturns|
msg.sender]=0;

24

[amount <= 0]

18
AS15

{msg.sender.transfer(amount);}
21 [amount>0] |19

20
[msg.sender != highestBidder]

{msg.sender.transfer(amount -
highestBid);}

23 [msg.sender == highestBidder]

22

13

VERISOLID Verification Process

First, transform a contract into an augmented transition system,
which captures behavior using transitions

- based on the formal operational semantics of supported Solidity statements

Theorem: The original contract and the corresponding augmented transition system
are observationally equivalent.

Second, transform an augmented transitions system into an
observationally-equivalent Behavior-Interaction-Priority (BIP) model

Over-approximation of contract behavior
- satisfied safety properties are satisfied by the actual contract

- violated liveness properties are violated by the actual contract

Verification using nuXmv model checker

b satisfied properties + violated properties (with violating transition traces)

1T

Verification Examples

- Blind auction |

bid [values.length == secret.length]

close
[now >= creationTime + 5 days]

cancelABB

finish
[now>=creationTime + 10 days]

cancelRB

Y

@ withdraw

unbid

- “King of Ether”

{owner =
msg.sender;}

{uint compensation =
calculateCompensation();}

[king.call.value(compensation)()]

{claimPrice =
calculateNewPrice();}

/ deadlock freedom
/ bid cannot happen after close

/ withdraw can happen only after finish

x 7/ will eventually happen after 4

15

VERISOLID Framework

-+ Generate equivalent Solidity code from VERISOLID contract models

based on the formal operational semantics of transitions

- VERISOLID IDE

® GME > New > master > BlindAuction .

>~ Ov ":* 0 D[]' - i ® Q Find...
AddSecurityPatterns$t =~ All
SolidityCodeGenerator&} +
VerifyContracti} 1:
Met
= clos
no
ABB reveal
Documentat bid [values.length == secrets.length]

ccccc

now >= creationTime + 10 days]

unbid withdraw

iIntegrated graphical
and text editor

integrated verification
and code generation

16

Conclusion

VERISOLID advantages
high-level model with formal semantics (which are familiar to most developers)
verification of desired behavior (instead of searching for typical vulnerabilities)
high-level feedback to the developer (for violated properties)

Solidity code generation (instead of error-prone coding)

Source code: http://qithub.com/anmavrid/smart-contracts

Live demo at: http://cps-vo.org/group/SmartContracts
(requires free reqistration)

17

https://github.com/anmavrid/smart-contracts
http://cps-vo.org/group/SmartContracts

Thank you for your attention!

Questions?

aronlaszka.com
alaszka@uh.edu

18

