Designing Secure Ethereum Smart Contracts:
A Finite State Machine Based Approach

Anastasia Mavridou'! and Aron Laszka?

1Vanderbilt University
2 University of Houston

IJ1 freeCodeCamp(®)

HOME DEV DESIGN DATA | LEARN TO CODE FOI

A hacker stole $31M of Technology
Ether—how it happened,
and what it means

for Ethereum

Hack attack drains start-up investment fund

i 2h * 1100 s e [1) w85
Addd
7 WHIRAD!

KLINT FINLEY BUSINESS 06.18.16 04:30 AM

S, BUSINESS

- C P A0 MILLION IACK JUST =
il Someone deleted some code in a popular SHOWED THAT THE DAO
™ cryptocurrency wallet — and as much as WAS ALL TOO HUM AN

$280 million in ether is locked up

Becky Peterson O Nov. 7,2017,6:29 PM 4 145,211

Smart Contract Insecurity

Smart contracts are riddled with bugs and security vulnerabilities

&

A recent automated analysis of 19,336 Ethereum contracts

8,333 contracts suffer from at least one security issue

TECHNOLOGY & SECURITY

»
7

Millions of Dollars In
Ethereum Are
Vulnerable to Hackers
Right Now

Researchers discovered 34,200 buggy smart
contracts on Ethereum.

-
v -
ey

4

5 days ago | Kai Sedgwick |® 12391 . \

Report Claims 34,000 Ethereum Smart
Contracts Are Vulnerable to Bugs

Nikolic, Ivica, Aashish KolluriChu, llya Sergey, Prateek Saxena, and Aguinas Hobor.
“Finding the Greedy, Prodigal, and Suicidal Contracts at Scale.”arXiv:1802.06038, 2018.

Security Vulnerabllities are a Serious Issue

Smart contracts handle financial assets of significant value
Value held by Ethereum contracts is 12,205,706 ETH or $10B

Smart contract bugs cannot be patched

Once a contract is deployed, its code cannot be changed

Blockchain transactions cannot be rolled back
Once a malicious transaction is recorded it cannot be removed

Well... actually...

It can be rolled back with a hard fork of the blockchain

Common Vulnerabilities

Examples of common vulnerabilities [1]

Reentrancy

Transaction-Ordering Dependency

Reentrancy

In Ethereum, when there is a function call
The caller has to walit for the call to finish

A malicious callee might take advantage of this

function withdraw(uint amount) {
if (credit[msg.sender]>= amount) {
msg.sender.call.value(amount) () ;
credit[msg.sender]-=amount;

T}

Reentrancy

In Ethereum, when there is a function call
The caller has to walit for the call to finish

A malicious callee might take advantage of this

withdraw Mallory
4=,

/ call I

function withdraw(uint amount) {
if (credit[msg.sender]>= amount) {
msg.sender.call.value(amount) () ;
credit[msg.sender]-=amount;

T}

Reentrancy

In Ethereum, when there is a function call

The caller has to walit for the call to finish

A malicious callee might take advantage of this

withdraw

call

y —————

withdraw

function withdraw(uint amount) {
if (credit[msg.sender]>= amount) {
msg.sender.call.value(amount) () ;
credit[msg.sender]-=amount;

T}

—

-— Mallory / e

function() {

bank. withdraw (bank. queryCredit (this));
}

Transaction Ordering Dependency

Also known as unpredictable state vulnerability

The order of execution of function calls cannot be predicted

No prior knowledge of a contract’s state during call execution

createOffer (sell 10 tokens for 1 ether)
e

Seller

10

Transaction Ordering Dependency

Also known as unpredicta

ole state vulnerability

The order of execution of 1

‘unction calls cannot be predicted

No prior knowledge of a contract’s state during call execution

createOffer (sell 10 tokens for 1 ether)

Seller

updateOffer (sell1 token for 1 ether
—>

11

Our Motivation

Vulnerabilities often arise due to the semantic gap
The assumptions developers make about execution semantics
The actual semantics

Prior work:

ools for identifying existing vulnerabilities

ools for static analysis

Design patterns, e.qg., Checks-Effects-Interactions
We explore a different avenue
We want to help developers to create secure smart contracts

Correctness-by-design

Our Approach - Model Based Design

We introduce a formal, transition-based language for smart contracts

Q label, [guard], action >©

- A contract can be naturally represented by a transition system

A Smart Contract is a tuple (5, sq,C,I,0,—)

- S is afinite set of states

- 59 € S Is the Initial state
- C, I, and O are finite sets of contract, input, and output variables
- - C SxGxFxS |sa transition relation

- G |s a set of guards and F is a set of action sets

13

—Xample:
Blind Auction Contract as a Transition System

close reveal

bid ' ABB [now > creationTime + 5 days] [values.length == secret.length]
finish
cancelABB < ncelRB [now >= creationTime + 10 days]

unbid
Qwithdraw

14

Our Approach - Model Based Design

Advantages
High-level model = adequate level of abstraction
Rigorous semantics = amenable to formal verification
Code generation from transition systems to Solidity code

Plugins that implement security features and design patterns

15

Common Vulnerabilities and Design Patterns

Examples of common vulnerabilities [1]
Reentrancy
Transaction-Ordering Dependency
Most common design patterns [2]
Authorization

Time constraints

[1] Luu, Loi, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
"Making smart contracts smarter." ACM CCS, 2016.

2] Bartoletti, Massimo, and Livio Pompianu. "An empirical analysis of smart
contracts: platforms, applications, and design patterns.”" TSC in FC, 2017.

—xamples of FSolidM

- Locking

bool private locked = false;
modifier locking {
require(!locked) ;
locked = true;

-_)

locked = false;

Reentrancy

Dlugins

17

—xamples of FSolidM Plugins

- Transition counter

uint private transitionCounter = O;
modifier transitionCounting(uint nextTransitionNumber) {
require (nextTransitionNumber == transitionCounter);

transitionCounter += 1;

-

}

Transaction-Ordering Dependency

18

Ongoing Work on Verification

NuSMV model checker to verify

Safety properties

e.g., a faulty state should not be reached
Deadlock freedom
Liveness properties

e.g., a state of the system will be eventually reached

19

Ongoing Work on Verification

NuSMV model checker to verify

Safety properties
e.g., a faulty state should not be reached

Deadlock freedom

Liveness properties
e.g., a state of the system will be eventually reached

close reveal
bid ABEB [now > creationTime + 5 days] Deadlock freedom /
¢ AG (close = AG Ibid) v
finish :
cancelABB " AG (W|thdraW —
cancelRB

AX A [lwithdraw W subtract]) ¥/
Qwithdraw
20

DISCUSSION

Formal model, clear semantics, easy-to-use graphical editor

Decreasing the semantic gap

Rigorous semantics

Amenable to analysis and verification

Code generation + functionality and security plugins

Minimal amount of error-prone manual coding

SOl
SOl

10

10

M source code: http://githulb.com/anmavrid/smart-contracts

M also available at: http://cps-vo.org/group/SmartContracts

lhantk W'/

21

https://github.com/anmavrid/smart-contracts
http://cps-vo.org/group/SmartContracts

