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—volution of Traffic Control

Traditional Intelligent
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direct attacks based | attacks through wireless interfaces
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Vulnerabillities In Traffic Signals

Case study by University of Michigan [1]

In cooperation with a road agency
located in Michigan, which operates
around a hundred traffic signals

Intersections are part of the same
network, but operate individually

Major weaknesses:
- wireless communication is unencrypted

- controllers are vulnerable to known exploits
- devices use default usernames and passwords

[1] Ghena et al., “Green Lights Forever: Analyzing the Security of Traffic
Infrastructure,” Proceedings of the 8th USENIX Workshop on Offensive
Technologies (WOQOT), August 2014.



Attacks Based on Traffic Signal Tampering

Due to hardware-based failsafes, these vulnherabilities cannot be
used directly to cause traffic accidents

However, they may be used to cause disastrous traffic
congestions, which can effectively cripple a transportation network

How vulnerable are transportation networks to such attacks?
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1. Traffic Model: Daganzo’s Cell Transmission Model

-+ Well-known and simple approach for modeling traffic flow

Discrete: time iIs divided into intervals,
while roads are divided into cells

- Traffic flow is limited by the capacity and the congestion
level of the successor cell

Traffic density



2. Signalized Intersection Model

Intersection:
cell with multiple predecessors

- Signalized intersection:
inflow proportions are controlled by the signal schedule

Yij = Dijj ¥ min(Q, O(N - xj))
Zipij= 1



3. Attacker Model

Action space

- budget limit: attacker can compromise at most B intersections

. tampering: attacker can change the schedule (i.e., inflow proportions pij) of

every compromised intersection j

- failsafes: the attacker can select only valid schedules (i.e., the inflow
proportions must add up to one: Zipij = 1)

Goal

- worst-case:
attacker minimizes the network’s utility by maximizing its congestion

We quantify congestion as the total travel time T of the
vehicles that enter the transportation network



Vulnerability and Critical Intersections

Vulnerability of a transportation network:

T(A) — T
T

- T total travel time without attack

- T(A): total travel time resulting from a worst-case attack

Critical intersections:
an intersection iIs critical if it is an element of a worst-case attack




Computational Complexity

Theorem: Given a transportation network, an attacker
budget B, and a threshold travel time T*, determining

whether there exists an attack A satisfying the budget
constraint such that 7(A) > T is NP-hard.

- We cannot hope to find polynomial-time algorithms for
evaluating the vulnerabllity of a transportation networks
against signal-tampering attacks



Heuristic Algorithm for Finding an Attack

* COmbiﬂa’[iOﬂ Of tWO Algorithm 1 Polynomial-Time Heuristic Algorithm for
Finding an Attack

principles: YY)
. Outer SearCh: for bh = l, C e ey B dO
- .. for s € S do
greedy heuristic for for k € T-1(s) do
selecting the set of A — AU{s}, {prs = 1,¥j # k : p;js = 0})
intersections to target if T(A") > T(A") then
A* — A’
* Inner search: end if
for each new intersection j, de?d for
exhaustive search over j:_ ;1;
extreme configurations end for
(i.e., Dij =1 for some i) Output A

- Running time: polynomial in the size of the input



Numerical Evaluation

- Random road networks:
Grid model with Random Edges (GRE) [2] i oS

o . . o
- grid with randomly chosen horizontal/vertical edges 7 N el
removed and diagonal edges added ”T‘\,\ W, e s i
- resulting networks are very similar to real-world road / = s

networks with respect to various metrics (e.g., road

density, shortest-paths) Los Angeles
- Generated 300 random networks
- resembling either European or US cities
- Performed an exhaustive search and the
heuristic algorithm on each network
Helsinki

[2] W. Peng, G. Dong, K. Yang, J. Su, and J. Wu. “A random road network model for mobility
modeling in mobile delay-tolerant networks.” Proceedings of the 8th International Conference
on Mobile Ad-hoc and Sensor Networks (MSN), pages 140-146. IEEE, 2012.
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as expected, the running time of
exhaustive search grows exponentially



Travel Times
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Micro-Model Based Simulations

How well does the algorithm perform in a micro moadel?

SUMO simulator
(Simulation of Urban MODbility)

- widely-used microscopic simulator

- traffic demand:
placing individual vehicles on the road
network and setting their trajectories

- traffic light schedule:
modeled explicitly by SUMO

Total travel time T(A): total travel time output by SUMO



—xample Transportation Network

- Transportation network

+area around Vanderbilt \ S \X
University campus ’ “”‘€ S
-+ from OpenStreetMap ‘\ "\ \'..
- Traffic scenarios — "‘ ’ -
1. morning commute .')‘\ —— ﬁ\
. AN |
. mldday ‘<‘ 's'j
3. afternoon commute é ’=- T 1Y)
4. nighttime = —

Targetable intersections

(all data available on the _
marked by red disks

first author's homepage)



Travel Times in the Afternoon Scenario
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less than 0.8% difference In every case



Comparison of Scenarios

| | |
— 690 | O x  Without attack -
o O Heuristic algorithm

=
= O
E

S

—
+~

50 O -

CS X

O X
=

257 X X -
| | | |

morning midday afternoon night

Scenario

vulnerabillity varies between
51% (midday scenario) and 92% (morning scenario)



Ongoing Work: Resilient Traffic Signal Configuration

Resilient configuration:
even if some of the traffic signals are compromised and

reconfigured, the default configuration of the remaining
signals ensures acceptable traffic flow

- Tradeoff:
resilience < efficiency

travel time after attack <« travel time without attack

Can we increase resilience
without a significant sacrifice of efficiency?



Numerical Example

. Example network: /i;ﬂ—»(lei/targetable intersections
[Cell 1 }—{ Cell 2 }—{ Cell 5 ) (jn?
((ll() >|c(ua mﬁ} > Cell 10
- Pareto optimal configurations:
450

%

“‘% 400

é 350

305 310 315 320 325 330
Normal travel time



Numerical Example
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Numerical Example

+ Bxample network: }‘ﬂi—’w“‘/targetable intersections
ﬂ) ’{ Cell 2 } ’ Cell ') »{ (,':ll 7

- Pareto optimal configurations:
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Conclusion & Future Work

Approach and algorithm for evaluating the vulnerability of
transportation networks

Evaluation based on a large number of random networks
and a real-world road network

Future work: what makes a traffic signal critical®?

- what metrics are related to vulnerability and criticality
(e.g., characteristics of the traffic flowing through the intersection, graph-
theoretic metrics, such as centrality)




Thank you for your attention!

Questions?




