Vulnerability of Transportation Networks to Traffic-Signal Tampering

<u>Aron Laszka¹</u>, Bradley Potteiger², Yevgeniy Vorobeychik², Saurabh Amin³, Xenofon Koutsoukos²

¹University of California, Berkeley ²Vanderbilt University ³Massachusetts Institute of Technology

Evolution of Transportation Networks

Evolution of Transportation Networks

Intelligent Transportation

 reducing wasted time and environmental impact, increasing road safety, etc.

Evolution of Traffic Control

	Traditional	Intelligent
Traffic control devices	standalone hardware	complex networked systems of sensors and controllers
Traffic signal timing	configured at the time of deployment	adapt to local or global traffic situation
Traffic flow	varies freely with traffic demand	optimized to minimize, e.g., wasted time and environmental impact
Vulnerabilities	direct attacks based on physical access	attacks through wireless interfaces or remote attacks over the Internet

Vulnerabilities in Traffic Signals

Case study by University of Michigan [1]

- In cooperation with a road agency located in Michigan, which operates around a hundred traffic signals
- Intersections are part of the same network, but operate individually
- Major weaknesses:
 - wireless communication is unencrypted
 - controllers are vulnerable to known exploits
 - devices use default usernames and passwords

[1] Ghena et al., "Green Lights Forever: Analyzing the Security of Traffic Infrastructure," *Proceedings of the 8th USENIX Workshop on Offensive Technologies (WOOT)*, August 2014.

Attacks Based on Traffic Signal Tampering

- Due to hardware-based failsafes, these vulnerabilities cannot be used directly to cause traffic accidents
- However, they may be used to cause disastrous traffic
 congestions, which can effectively cripple a transportation network

How vulnerable are transportation networks to such attacks?

Vulnerability Assessment

1. Traffic Model: Daganzo's Cell Transmission Model

- Well-known and simple approach for modeling traffic flow
- Discrete: time is divided into intervals, while roads are divided into cells

 Traffic flow is limited by the capacity and the congestion level of the successor cell

2. Signalized Intersection Model

 Intersection: cell with multiple predecessors

 Signalized intersection: inflow proportions are controlled by the signal schedule

$$y_{ij} \leq p_{ij} \times \min(Q, \delta(N - x_j))$$

$$\sum_{i} p_{ij} = 1$$

3. Attacker Model

- Action space
 - **budget limit**: attacker can compromise at most *B* intersections
 - **tampering**: attacker can change the schedule (i.e., inflow proportions p_{ij}) of every compromised intersection *j*
 - **failsafes**: the attacker can select only valid schedules (i.e., the inflow proportions must add up to one: $\sum_i p_{ij} = 1$)
- Goal
 - worst-case:

attacker minimizes the network's utility by maximizing its congestion

• We quantify congestion as the **total travel time** *T* of the vehicles that enter the transportation network

Vulnerability and Critical Intersections

Vulnerability of a transportation network:

$$\frac{T(\mathcal{A}) - T}{T}$$

- *T*: total travel time without attack
- $T(\mathcal{A})$: total travel time resulting from a worst-case attack

Critical intersections:

an intersection is **critical** if it is an element of a worst-case attack

Theorem: Given a transportation network, an attacker budget *B*, and a threshold travel time T^* , determining whether there exists an attack \mathcal{A} satisfying the budget constraint such that $T(\mathcal{A}) > T^*$ is NP-hard.

 We cannot hope to find polynomial-time algorithms for evaluating the vulnerability of a transportation networks against signal-tampering attacks

Heuristic Algorithm for Finding an Attack

- Combination of two principles:
 - outer search:
 greedy heuristic for selecting the set of intersections to target
 - *inner search:* for each new intersection *j*,
 exhaustive search over
 extreme configurations
 (i.e., *p_{ij}* =1 for some *i*)

Algorithm 1 Polynomial-Time Heuristic Algorithm for Finding an Attack

```
\begin{array}{l} \mathcal{A} \leftarrow (\emptyset, \emptyset) \\ \text{for } b = 1, \dots, B \text{ do} \\ \text{for } s \in \mathcal{S} \text{ do} \\ \text{for } k \in \Gamma^{-1}(s) \text{ do} \\ \mathcal{A}' \leftarrow \mathcal{A} \cup (\{s\}, \{\hat{p}_{ks} = 1, \forall j \neq k : \hat{p}_{js} = 0\}) \\ \text{if } T(\mathcal{A}') \geq T(\mathcal{A}^*) \text{ then} \\ \mathcal{A}^* \leftarrow \mathcal{A}' \\ \text{end if} \\ \text{end for} \\ \mathcal{A} \leftarrow \mathcal{A}^* \\ \text{end for} \\ \text{Output } \mathcal{A} \end{array}
```

Running time: polynomial in the size of the input

Numerical Evaluation

- Random road networks: Grid model with Random Edges (GRE) [2]
 - grid with randomly chosen horizontal/vertical edges removed and diagonal edges added
 - resulting networks are very similar to real-world road networks with respect to various metrics (e.g., road density, shortest-paths)
- Generated 300 random networks
 - resembling either European or US cities
- Performed an exhaustive search and the heuristic algorithm on each network

Los Angeles

Helsinki

[2] W. Peng, G. Dong, K. Yang, J. Su, and J. Wu. "A random road network model for mobility modeling in mobile delay-tolerant networks." *Proceedings of the 8th International Conference on Mobile Ad-hoc and Sensor Networks (MSN)*, pages 140–146. IEEE, 2012.

Running Times

as expected, the running time of exhaustive search grows exponentially

Travel Times

less than 3.4% difference in every case

Micro-Model Based Simulations

How well does the algorithm perform in a micro model?

- SUMO simulator (Simulation of Urban MObility)
 - widely-used microscopic simulator
 - traffic demand:
 placing individual vehicles on the road
 network and setting their trajectories
 - traffic light schedule: modeled explicitly by SUMO

• Total travel time $T(\mathcal{A})$: total travel time output by SUMO

Example Transportation Network

- Transportation network
 - area around Vanderbilt University campus
 - from OpenStreetMap
- Traffic scenarios
 - 1. morning commute
 - 2. midday
 - 3. afternoon commute
 - 4. nighttime

(all data available on the first author's homepage)

Targetable intersections marked by red disks

Travel Times in the Afternoon Scenario

less than 0.8% difference in every case

Comparison of Scenarios

vulnerability varies between **51%** (midday scenario) and **92%** (morning scenario)

Ongoing Work: Resilient Traffic Signal Configuration

Resilient configuration:

even if some of the traffic signals are compromised and reconfigured, the default configuration of the remaining signals ensures acceptable traffic flow

• Tradeoff:

```
resilience \leftrightarrow efficiency
travel time after attack \leftrightarrow travel time without attack
```

Can we increase resilience without a significant sacrifice of efficiency?

Numerical Example

- Example network:
 Cell 3 Cell 4 targetable intersections
 Cell 1 Cell 2 Cell 5 Cell 7 Cell 7
 Cell 6 Cell 8 Cell 9 Cell 10
- Pareto optimal configurations:

Numerical Example

- Example network:
 Cell 3 Cell 4 targetable intersections
 Cell 1 Cell 2 Cell 5 Cell 7 Cell 7 Cell 7 Cell 7 Cell 9 Cell 10
- Pareto optimal configurations:

Numerical Example

- Example network:
 Cell 3 Cell 4 targetable intersections
 Cell 1 Cell 2 Cell 5 Cell 7 Cell 7
 Cell 6 Cell 8 Cell 9 Cell 10
- Pareto optimal configurations:

Conclusion & Future Work

- Approach and algorithm for evaluating the vulnerability of transportation networks
- Evaluation based on a large number of random networks and a real-world road network
- Future work: what makes a traffic signal critical?
 - what metrics are related to vulnerability and criticality (e.g., characteristics of the traffic flowing through the intersection, graphtheoretic metrics, such as centrality)

Thank you for your attention!

Questions?

