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Monitoring Spatially-Distributed Systems

• To dynamically control a system, we must have accurate information 
about its evolving state 

• In a number of applications, such as electrical grids or traffic networks,  
• system to be monitored can extend over a vast area

• there can be a large number of possible points of observation


Where should we place sensors for monitoring a system?



Cyber-Attacks Against Sensors

Example: in 2008, a major Turkish oil pipeline suffered a cyber-attack 
• attackers disabled the pressure and flow sensors, which allowed them to 

super-pressurize the oil in the pipeline, causing an explosion 
• control room did not learn of the blast for 40 minutes after it happened 

How can we improve the attack-resilience of monitoring?



Resilient Sensor Placement

• Resilience:  
even if some of the sensors are disabled by an attack, 
we are able to reliably estimate the state of the system 

• Redundant placement 
• simply place more sensors

• requires excessive spending


• Limited budget 
• limited number of sensors


• Resilient placement:  
placing sensors so that together they are resilient to attacks



Resilient Sensor Placement Problem

Problem Formulation

Placement 
constraints

Monitoring 
objective

Attacker 
model

set of locations V, 
number of sensors N

S ⊂V : |S |=N

minimizing the variance 
of Gaussian-process 
based regression

minσY |S
2

worst-case disabling 
attacks against at 
most K sensors
A ⊂ S : |A |≤K



Objective

• Gaussian-process based regression 
• kernel-based machine learning method

• assumes that the joint distribution of the observations and the predictor 

variable is a Gaussian

• has been used to predict various physical processes, e.g., road traffic


• Objective: variance of the predictor variable 
• depends only on the prior (i.e., where sensors are placed)

• proportional to mean squared error or uncertainty


• Resilient sensor placement problem:
min

S ⊂V : |S |=N
max

A⊂S : |A|≤K
σ Z |(S \A )
2

How much can we improve resilience through placement?



Numerical Results Based on Traffic Data

• Dataset 
• from the Caltrans Performance 

Measurement System (PeMS)

• real-time data from sensors 

spanning across all major 
metropolitan areas of California


• we used hourly traffic data from 
January 2015


• Setup 
• we selected 37 locations from 

the Bay Area as possible 
sensor locations


• predictor variable is the average 
traffic over the area



Resilient and Non-Resilient Sensor Placements
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Computational Complexity

• Exhaustive search over all subsets is not feasible in practice 

• Can we find an optimal placement in polynomial time?

Theorem: The resilient sensor placement problem is NP-hard. 

• Can we at least compute how resilient a given placement is  
(i.e., find an optimal attack)?

Theorem: Finding an optimal attack for a given placement is NP-hard. 

• Polynomial-time algorithms for resilient sensor placement 
1. heuristic and approximation algorithms


2. algorithms for special cases



Heuristic and Approximation Algorithms

• First, we propose a greedy heuristic for finding an attack:

min
S ⊂V : |S |=N

max
A⊂S : |A|≤K

σ Z |(S \A )
2

attacker’s problem
sensor placement problem

1. Let 
2. While 

1. Let X be a variable maximizing 
2. Let 

3. Return  

A ←∅
A < K :

σ Z |(S \(A ∪ {X}))
2

A ←A ∪ {X}
A



Greedy Attack: Numerical Results
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• Less than 4% difference throughout numerous experiments



Greedy Algorithm for Resilient Sensor Placement

• Approximation guarantee:

1. Let 
2. While 

1. Let             be a variable minimizing 
2. Let 

3. While 
1. Let             be a variable minimizing 
2. Let 

4. Return

S ←∅
S < K +1:
X ∉ S σ Z |{X}

2

S ← S  ∪ {X}
S < N :
X ∉ S
S ← S  ∪ {X}

Obj S ∪{X}( )

S

Theorem: Let OPT be the difference between the prior variance and 
the optimal posterior. Then, the difference for the greedy selection is at 
least 

OPT −OPT ⋅ 1− γN ,K
N
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Greedy Sensor Placement: Numerical Results #1
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Greedy Sensor Placement: Numerical Results #2
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Special Case: Tree Covariance Graphs

• Covariance graph 
• vertices: variables representing observations at potential sensor locations

• edges: non-negligible covariance values between variables


• Special case: tree covariance graphs

Lemma: Greedy attack is always optimal.

Theorem: Optimal resilient sensor 
placement can be found in polynomial 
time using a bottom-up dynamic 
programming approach.
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Conclusion

• We formulated a resilient sensor placement problem 
based on Gaussian-process based regression 

• Using numerical results based on real-world data, we 
demonstrated that we can increase resilience significantly 

• We proposed heuristic and approximation algorithms, 
and an optimal algorithm for a special case 

• Open problems and future work 
• resilience to tampering attacks

• arbitrary trade-off between resilience and accuracy without attack



Thank you for your attention! 

Questions?


