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Monitoring Spatially-Distributed Systems

To dynamically control a system, we must have accurate information
about its evolving state

In a number of applications, such as electrical grids or traffic networks,
- system to be monitored can extend over a vast area

- there can be a large number of possible points of observation

Where should we place sensors for monitoring a system?




Cyber-Attacks Against Sensors

Example: in 2008, a major Turkish oll pipeline suffered a cyber-attack

attackers disabled the pressure and flow sensors, which allowed them to
super-pressurize the oll in the pipeline, causing an explosion

control room did not learn of the blast for 40 minutes after it happened

How can we improve the attack-resilience of monitoring?




Resilient Sensor Placement

Resilience:
even if some of the sensors are disabled by an attack,

we are able to reliably estimate the state of the system
- Redurdantpracement

- stimplyplace-more-sensers
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Limited budget

- limited number of sensors

Resilient placement:
placing sensors so that together they are resilient to attacks



Problem Formulation
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Objective

Gaussian-process based regression

- kernel-based machine learning method

-+ assumes that the joint distribution of the observations and the predictor
variable is a Gaussian

- has been used to predict various physical processes, e.g., road traffic

Objective: variance of the predictor variable

- depends only on the prior (i.e., where sensors are placed)

- proportional to mean squared error or uncertainty

Resilient sensor placement problem:
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How much can we improve resilience through placement?



Dataset

from the Caltrans Performance
Measurement System (PeMS)

real-time data from sensors
spanning across all major
metropolitan areas of California

we used hourly traffic data from
January 2015

- Setup

we selected 37 locations from
the Bay Area as possible
sensor locations

predictor variable is the average
traffic over the area

Numerical Results Based on Traffic
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Resilient and Non-Resilient Sensor Placements
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Computational Complexity

Exhaustive search over all sulbsets is not feasible in practice

Can we find an optimal placement in polynomial time?

Theorem: The resilient sensor placement problem is NP-hard.

Can we at least compute how resilient a given placement is
(i.e., find an optimal attack)?

Theorem: Finding an optimal attack for a given placement is NP-hard.

Polynomial-time algorithms for resilient sensor placement

1. heuristic and approximation algorithms

2. algorithms for special cases



Heuristic and Approximation Algorithms
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attacker’g problem
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—
sensor placement problem

First, we propose a greedy heuristic for finding an attack:

1. Let A<

2. While ﬁl\<K:
1. Let X be a variable maximizing o
2. Let A< AU{X}

3. Return A4

2
ZI(S\(A U {X}))




Greedy Attack: Numerical Results

Less than 4% difference throughout numerous experiments
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Greedy Algorithm for Resilient Sensor Placement

1. Let §< O
2. While |s|< K +1:
1. Let X & § be a variable minimizing a%l{X}
2. Let § < SU{X}
3. While \5\ <N:
1. Let X & § be a variable minimizing Obj(SU{X})
2. Let § < SU{X}
4, Return §

Approximation guarantee:

Theorem: Let OPT be the difference between the prior variance and
the optimal posterior. Then, the difference for the greedy selection is at
least

N-K
OPT — OPT - (1 _ vk )
N



Greedy Sensor Placement: Numerical Results #1

Uncertainty in Case of an Attack
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Greedy Sensor Placement: Numerical Results #2

Uncertainty in Without an Attack

4000000

3000000 —

- B QOptimal
O Greedy

2000000 -

1000000 -

1 | 2 | 3 | 4 | 5 | §)
Size of the Attack K

Variance of Predictor Without Attack



Special Case: Tree Covariance Graphs

Covariance graph

- vertices: variables representing observations at potential sensor locations

- edges: non-negligible covariance values between variables

Special case: tree covariance graphs

Lemma: Greedy attack is always optimal.

Theorem: Optimal resilient sensor
placement can be found in polynomial
time using a bottom-up dynamic
orogramming approach.




Conclusion

We formulated a resilient sensor placement problem
based on Gaussian-process based regression

Using numerical results based on real-world data, we
demonstrated that we can increase resilience significantly

We proposed heuristic and approximation algorithms,
and an optimal algorithm for a special case

Open problems and future work

- resilience to tampering attacks

- arbitrary trade-off between resilience and accuracy without attack



Thank you for your attention!

Questions?




