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WHY TRANSPORTATION SERVICES ARE IMPORTANT? @ Pennstate

®  Provide access to:

=  Education = Disruptions can lead to:
= Healthcare = Financial losses
= Emergency services = Physical damage

= Contribute to: = Bodily harm

= Economic growth
= Logistic services

= Delivery of essential goods
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VULNERABILITY OF TRANSPORTATION NETWORKS @ SRR

= SMS Disinformation

= Traffic Sign Manipulation

= Traffic Signal Manipulation

= False Data Injection in Navigation Applications



https://notthebee.com/
https://9to5google.com/
https://statescoop.com/

TRANSPORTATION NETWORK MODEL @ PennState

= Adirected graph ¢ = (V, E) defines the transportation
network’s roads and intersections

= Congestion Model

= Each road has a given free-flow travel time

= The more vehicles on a given road, the higher the actual
travel time

= Ateachintersection, drivers take the shortest path to
their destination based on a navigation application

Sioux Falls, SD



FALSE DATA INJECTION (THREAT) MODEL @ Pennstate

= The attacker has a budget to perturb perceived travel times
= The attacker perturbs perceived travel times at each step

= The drivers take a longer path due to perceived congestion

= Strong threat model:
The attacker has full observation of the network

= Vehicle locations

= Vehicle destinations Sioux Falls, SD



PROBLEM FORMULATION @ PennState

= Assessing the extent of the damage is the prerequisite for defense

= An attack oracle can be used to generate worst-case attacks for detection and mitigation schemes

= False datainjection attacks may happen over a time horizon
= Uncertainty of the environment

MDP = (S,A,R,T)
= The attacker can manipulate observed congestion in a navigation application

= Restricted to a fixed budget S - state space

A — action space

R(s,a) » rewarding rule
= Aimingto cause worst-case impact T(s,a) v transition rule

= Able to manipulate any road link

= | eadingto: Markov Decision Process (MDP) formulation

= Find a policy, mapping from network state to perturbations, that maximize total travel time



REWARD, ACTION, AND STATE SPACE @ PennState

Action

= Objective

=  Goal: maximize total travel time Environment

Observation

= Reward: rt = number of vehicles in traffic

Reward
= Action Space

= Perturb observed edge travel times restricted to a budget

= Action space: |at|; < Bandal >0

= State Space

®  \ehicle locations and destinations




DEEP REINFORCEMENT LEARNING AS ATTACK ORACLE @ PennState

= Reinforcement Learning

. . t t
optimize t(s*) » a Action

max E[Z2,y" - rit7|n]

Agent

Environment

= Critic: Q(s%,at) « r* + max Q(s**1,a") Observation
a’

= Updated by gradient descent, reducing Mean Reward
Squared Bellman Error

= Actor: m(st) « argmaxg, Q(st*t, a’)

= Updated with gradient ascent, increasing



FEATURE EXTRACTION FROM COMBINATORIAL STATE @ Pennstate

Action

= Features foredgee

Agent

1. Number of vehicles that are at an intersection with Environment

an unperturbed shortest path to the destination that
passes through e

Observation

Reward
2. Number of vehicles that are on an edge but will take

e as the shortest path

3. Number of vehicles that are at an intersection that
will immediately take e as their shortest path
without perturbation

4. Number of vehicles currently on e

5. Sum of remaining travel times of vehicles currently
onedgee

= State represented as |E| X5 vector




CHALLENGES FOR DEEP REINFORCEMENT LEARNING @ Pennstate

Action

= The attacker could output perturbations for
hundreds of city roads

Environment

Observation

=  General-purpose reinforcement learning

: . . Reward
algorithms (e.g., DDPG) are infeasible even for
a small city N
= 24 nodes and 76 edges in Sioux Falls / ﬂ
= Enormous action/observation space

/| Sioux Falls, SD

L7 ]

= |trequires millions of samples collected from
the environment

= We need a robust and feasible attack oracle



HIERARCHICAL MULTI-AGENT REINFORCEMENT LEARNING @ Pennstate

= Theidea:
'
o o . N\ U4
= We can divide the network into smaller components _O_
= Low-level RL agents are assigned to each component g

= Ahigh-level RL agent coordinates the low-level agents

=  Why a high-level coordinator? I-VT—
= The total perturbations are restricted by a budget fQO
)

= Low-level agents compete over the budget

The high-level agent allocates the perturbation budget to the component agents

The low-level agents distribute allocated perturbation budgets to road links



HIERARCHICAL APPROACH @ PennState

High Level Agent

v

Low-Level Component Summary
Low-Level

.................................. » Component Allocation

—> Edge Features

""""""""" > Edge Perturbation

Component 1

Component 2



NETWORK DECOMPOSITION @ PennState

Decompose the network based on K-means clustering by edge distance (without congestion)

Component 1

# _ - S— .
| = 5 2 / — .5

[
Sioux Falls, SD / /'

Component 4

Component 2

Component 3



DISTRIBUTED LEARNING @ PennState

Low Level Agents
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EXPERIMENTAL SETUP @ PennState

® PBaselines

= Proportional (High Level): Allocates budget to each component based on proportion of vehicles in the component

= Greedy Heuristic (Low Level): Perturbs edges by proportion of vehicles that pass through that edge

= Random actions
=  DDPG without decomposition

= Hyperparameter search

®  Grid search



@ PennState
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CONCLUSION @ PennState

= We discussed the importance of resiliency of transportation networks
= We discussed how transportation networks are vulnerable to various attacks.
= Weintroduced a model of false-data attacks against navigation in transportation networks

=  We proposed a computational method based on multi-agent reinforcement learning to assess against
worst-case attacks

= \We demonstrated the effectiveness of our framework on the Sioux Falls, SD benchmark network

= We showed that a worst-case attack can significantly increase total travel time
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