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Motivation

® Accurately predicting the occupancy of a scheduled transit-vehicle trip is crucial

® Higher prediction accuracy can be achieved by fine-tuning the hyper-parameters of
machine-learning models for each transit route

® Designing a predictor for each route-direction combination is laborious
—Requires time and effort from machine learning experts

® We introduce a Randomized Local Hyper-parameter Search to fine tune the hyper-
parameters and predictor variables of a deep neural network




Research Questions

RQ1: Does fine-tuning the architecture and features for a specific task
improve performance?

RQ2: How much impact does the starting architecture of the randomized
local search have on the end results?

RQO3: How well does the optimized architecture of one task perform when
trained for other tasks?



- Data & Prediction Problem

® Automatic Passenger Count: Recordings on boarding and alighting events
® Weather: temperature, humidity, etc. based on location and time

® Input: Aggregated information about each trip in a particular route-direction integrated with
weather

® Target: Predicting maximum occupancy for a future trip on a particular route and in a particular
direction

= based on time and a few recent trips from a model trained on historical data

® Input consists of both non-sequential and sequential features

Non-Sequential Features Sequential Features

e Total number of stops in a trip

e Time - Month, Time of day, Day of week (Monday,
Tuesday, ..., Sunday)

« Weather - Temperature, Windspeed, Visibility, etc.
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Maximum and median occupancy of n
preceding trips and time difference
between them and the future trip




Architecture Template for Occupancy Prediction

. (Occupancy of n preceding
(Weather, time, total stops,..) trips, time difference)

Non-sequential Inputs Sequential Inputs

LI L
#layers { }#layers

Lo

What is the
Predicted Occupancy optimal architecture??
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Neural Architecture and Feature Search
for Occupancy Prediction

® We propose an Architecture and Feature Search to fine tune the feature set and
architecture hyper-parameters

® Objective: Finding an architecture and set of features A that minimizes the
prediction error [ryse and model complexity:

miny < o(lppyse + Model Complexity) st sl i
[ 1]]] [11]]]
&lll:ﬁ!ml:d Recurrent
{ P— }#Iayers
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Neural Architecture and Feature Search
for Occupancy Prediction

*Search Space, Q
Includes hyper-parameters, P for both architecture and feature set | |

(Weather, time, tptal stops, ..) trips, time difference)

Non-sequential Inputs Sequential Inputs

g aaany

% }#layers

0

* Number of layers, £ in different modules #Iayers{

* Number of neurons, /N in each layer of * Non-sequential and sequential

different modules features to include {
#layers

* Learning Rate, a for the model

Predicted Occupancy

*‘Randomized Local Search

Start >  Mutation > Evaluation > Accept/ Reject

[teratively generate random Based on performance, accept
neighbors in Q it with some random probability



Neural Architecture and Feature Search:

Estimating Prediction Loss

A’ — new Arch. from
mutation

A

*Evaluation is based on both model
loss and complexity
*Loss = RMSE obtained with k-fold
cross validation
*Complexity = number of trainable
parameters

*Randomized search will repeat for a fixed
number of iteration

>

S’ -> Estimate
performance for A’

No

\4

Randomly accept with
AcceptProbability

l

If accept?

l Yes

Update
A=A,5=Y

!

*architecture’s hyper-parameter - 75%
*predictor variables - 25%

iter>=max_iter <

! Yes

Terminate



Neural Architecture and Feature Search:
Single Mutation Step

Pick HP for architecture (/) or

Start Arch. &

Features " featurfs (F)
F h
l F/h |
Pick type of F with PF Pick Arch. Hyper-parameter
with a pre-defined probability,
| it
Non- L/ N/«
— sequential/ —
Sequential L Nl X
' ' Randomly Modify « b
Add/remove 1 Add/remove info. Add/Remove 1 choose an £ Odily o« Dy a
Feature about 1 preceding trip L l percentage f,
Modify /N by a

percentage [y



Experimental Setup

Dataset
*APC data for Chattanooga, TN
* Trips in total 23 routes in both direction
*Dataset timespan: 2 years (2019-2021)
*Algorithm is evaluated on 10 diverse tasks,
1.e., route-direction combination
*considering number of trips, average
occupancy, variance, etc.

NAS Score

AN

min

10

300 600
Search Iteration

Architecture and Feature Search scores
for all the tasks combined
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Results

RQ1: Task-specific vs Generally Optimized Architecture
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Fig: Comparison between architecture that were found by generic
(yellow 0) and task-specific searches (blue B) based on NAS score
for each specific task
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Results

RQ2: Starting Architecture of Task-Specific Search

Lower = better

Runtime NAS Score
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4-In 4-Out 1-In 1-Out 9-In 9-Out 2-In 2-Out 7-In 7-Out 4-In 4-Out 1-In 1-Out 9-In 9-Out 2-In 2-Out 7-In 7-Out
Tasks Tasks
Runtime for finding the optimal architecture for NAS scores attained for specific task by searches from -
different tasks from- | e Hand-designed architecture (bluel )
e Hand-designed start architecture (bluef ) « Best generic architecture (purple[j)
e Best generic architecture (purple [])
Hand Designed avg. 68.6% Hand Designed avg. 3.21

Optimized avg. 65.3% Optimized avg. 3.14
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Results

RQ3: Comparison among Architectures Optimized for Specific Tasks

NAS Scores for Models Trained for Various Tasks using Architectures Optimized for Different Tasks

Task
4 Inbound | 4 Outbound | 1 Inbound | 1 Outbound | 9 Inbound | 9 Outbound | 2 Inbound | 2 Outbound | 7 Inbound | 7 Outbound
Optimized Arch:
4 Inbound 4.96 5.30 3.85 3.14 4.66 4.62 2.66 1.94 1.89 2.17
4 Outbound 491 5.09 3.98 3.14 4.39 4.33 2.68 1.95 1.89 2.19
1 Inbound 5.69 5.81 3.79 3.41 4.88 4.48 2.77 2.03 2.07 2.85
1 Outbound 4.94 5.24 391 3.03 4.37 4.58 2.66 1.94 1.88 2.14
9 Inbound 5.04 5.26 3.95 3.56 4.52 4.50 2.75 2.08 1.97 2.37
9 Outbound 5.12 5.42 3.97 3.42 4.64 4.50 2.58 2.03 1.96 2.37
2 Inbound 5.06 5.36 3.95 3.18 4.47 4.19 2.34 1.57 1.72 2.23
2 Outbound 4.96 5.27 3.81 3.07 4.28 4.21 2.41 1.72 1.56 2.15
7 Inbound 5.06 5.26 3.90 3.15 4.17 4.10 2.20 1.69 1.54 2.25
7 Outbound 5.58 591 3.81 3.38 4.71 4.73 2.64 1.91 1.93 2.07
Generic NAS 5.17 5.58 4.02 3.37 4.56 4.61 2.89 2.10 2.17 2.32

Darker red = worse performance
Darker green = better performance
Diagonal cells -> model scores trained
for tasks using their corresponding
optimized architecture
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Conclusion

oImproving prediction accuracy by fine-tuning machine-learning architectures for each transit
route in each direction is possible

We proposed a framework for neural- architecture and feature-set search

eAlleviates the need for fine-tuning by machine-learning experts

Significantly reduces prediction error and model complexity based on real-world data

Thank you for your attention!!

Questions? m

Aron Laszka
alaszka@uh.edu
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