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Motivation

•Accurately predicting the occupancy of a scheduled transit-vehicle trip is crucial


•Higher prediction accuracy can be achieved by fine-tuning the hyper-parameters of 
machine-learning models for each transit route


•Designing a predictor for each route-direction combination is laborious

-Requires time and effort from machine learning experts


•We introduce a Randomized Local Hyper-parameter Search to fine tune the hyper-
parameters and predictor variables of a deep neural network
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Research Questions

RQ1: Does fine-tuning the architecture and features for a specific task 
improve performance?


RQ2: How much impact does the starting architecture of the randomized 
local search have on the end results?


RQ3: How well does the optimized architecture of one task perform when 
trained for other tasks?
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Data & Prediction Problem
Data:


• Automatic Passenger Count: Recordings on boarding and alighting events

• Weather: temperature, humidity, etc. based on location and time


• Input: Aggregated information about each trip in a particular route-direction integrated with 
weather 


• Target: Predicting maximum occupancy for a future trip on a particular route and in a particular 
direction 


- based on time and a few recent trips from a model trained on historical data


• Input consists of both non-sequential and sequential features
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Non-Sequential Features Sequential Features

• Total number of stops in a trip

• Time - Month, Time of day, Day of week (Monday,  

Tuesday,  …,  Sunday)

• Weather - Temperature, Windspeed, Visibility, etc.

Maximum and median occupancy of n 
preceding trips and time difference 
between them and the future trip



Architecture Template for Occupancy Prediction
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What is the 

optimal architecture??

Feed-forward


Feed-forward


#neurons

Recurrent


#neurons

(Weather, time, total stops, ..)

Non-sequential Inputs

(Occupancy of n preceding 
trips, time difference)


Sequential Inputs

#layers {

#layers {

}#layers

#neurons

Predicted Occupancy



Neural Architecture and Feature Search

 for Occupancy Prediction
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• We propose an Architecture and Feature Search to fine tune the feature set and 
architecture hyper-parameters


• Objective: Finding an architecture and set of features A that minimizes the 
prediction error lRMSE and model complexity: 



minA ∈ Ω(lRMSE + Model Complexity)



Neural Architecture and Feature Search

 for Occupancy Prediction
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•Search Space, Ω

Includes hyper-parameters, HP for both architecture and feature set

Architecture hyper-parameter, h
 Feature hyper-parameter, F


•Number of layers, L in different modules 

•Number of neurons, N  in each layer of  

different modules

•Learning Rate, α for the model


•Non-sequential and sequential 
features to include

•Randomized Local Search


Start Mutation Evaluation Accept/ Reject

Iteratively generate random 

neighbors in Ω

Based on performance, accept 

it with some random probability
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•Evaluation is based on both model 
loss and complexity


•Loss = RMSE obtained with k-fold 
cross validation


•Complexity = number of trainable 
parameters


   new Arch. from 
mutation

A′￼  -> Estimate 
performance for 

S′￼

A′￼

Update

 , 
A = A′￼ S = S′￼

Randomly accept with 
AcceptProbability

Yes

iter>=max_iter

If accept?
No

No

Terminate

Yes

Neural Architecture and Feature Search: 
Estimating Prediction Loss

•Randomized search will repeat for a fixed 
number of iteration


•architecture’s hyper-parameter - 75% 

•predictor variables - 25%
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Add/remove 1 
Feature

Add/remove info. 
about 1 preceding trip

L/N/α

Add/Remove 1 
L

Randomly 
choose an L

Modify N by a 
percentage  βN

Modify α by a 
percentage βα

Start Arch. & 
Features

F/h

Pick HP for architecture (h) or 
features(F)

Pick Arch. Hyper-parameter 
with a pre-defined probability, 

Pick type of F with PF

F  h

L α
N

Neural Architecture and Feature Search: 

Single Mutation Step

Non-
sequential/ 
Sequential
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Experimental Setup
Dataset


•APC data for Chattanooga, TN

• Trips in total 23 routes in both direction


•Dataset timespan: 2 years (2019-2021)

•Algorithm is evaluated on 10 diverse tasks, 
i.e., route-direction combination


•considering number of trips, average 
occupancy, variance, etc.

Published in the proceedings of the 8th IEEE International Conference on Smart Computing (SMARTCOMP 2022).
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Fig. 2: Neural architecture search with score based on model
complexity and the average RMSE over all tasks.

fine-tunes the set of features, and the remaining 75% of the
time, it adjusts the hyper-parameters of the architecture search
space. For the feature set, we prepare a set of 6 different non-
sequential features and the occupancy of 10 preceding trips as
the sequential features. Since time information is crucial for
predicting the ridership of any route, we always include time
features (time of day and day of week) as part of the non-
sequential inputs. When the algorithm tunes the feature space,
it can pick either sequential or non-sequential features with a
uniform probability PF . The neuron change percentage �N

is chosen uniformly at random from [�25%, 25%] in each
step. The learning rate change percentage �↵ is either �20%
or 20%. The NAS algorithm runs for 6,000 iterations before
termination, and each architecture A in G is trained until
the learning converges. The training time of each architecture
varies based on model complexity and dataset size. Running
Algorithm 1 for 6,000 iterations on different datasets takes
around 4 to 5 days on average on 1 CPU node with 20 cores.

B. Numerical Results
1) Task-specific vs. Generally Optimized Architecture (Q1):

Our first research question is whether the architecture found
by a route-direction specific search outperforms a generally
optimized architecture. To answer this question, we first run
a generic architecture and feature search to find an optimal
architecture and feature set that work best on average for all
tasks, i.e., over all route-direction combinations. We start the
search with all available features and a hand-designed initial
architecture. The search algorithm proposes an architecture,
and for each task, trains a separate model to obtain an RMSE
score. For each task, we use 5–fold cross–validation to obtain
an average RMSE score. Finally, the architecture and feature
set are accepted or rejected by the search based on model
complexity and the average RMSE score over all the tasks.
This search returns an architecture and a feature set A

best

that work best on average over all tasks. Later, we also use
A

best as the starting architecture for the task-specific searches.
Figure 2 shows the first 900 scores of the accepted architec-

tures of the generic search. After trying around 600 different
architectures, the search reaches the best architecture based on
average RMSEs on the validation sets and model complexity.

For the comparison, we run task-specific architecture and
feature searches, where we optimize each architectures for
predicting the ridership of a specific route and direction.
The starting point of each task-specific search is the same
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Fig. 3: Comparison between architectures that were found by
generic (yellow ) and task-specific searches (blue ) based on
NAS score for each specific task.

TABLE I: Searches with Different Starting Architectures

Task
NAS from

Hand-Designed Architecture
NAS from

Optimized Architecture
Score Runtime [%] Score Runtime [%]

4-In 4.836 47.12 4.894 31.27
4-Out 5.239 65.48 5.056 31.53
1-In 3.675 36.00 3.714 18.57

1-Out 3.039 97.13 3.005 45.88
9-In 3.929 80.15 3.973 87.30

9-Out 3.799 73.23 3.963 86.63
2-In 2.144 61.25 1.973 96.67

2-Out 1.852 65.43 1.584 58.85
7-In 1.543 98.28 1.288 97.63

7-Out 2.030 61.93 1.961 99.03
Average 3.21 68.6 3.14 65.3

hand-designed initial architecture. We run the search for 6000
iterations and select the best architecture. Finally, we retrain
the best architecture found by the generic search (Figure 2)
on each task, and compare the results with architectures found
by task-specific searches.

Figure 3 shows the score after training a specific task
with both generic and task-specific architectures. There is a
clear gap between the two losses, which indicates that the
architecture and feature set found by the task-specific search
outperforms the ones found when optimizing for all tasks.
So, prediction error and model complexity can be reduced by
optimizing the hyper-parameters for a specific task.

2) Starting Architecture of Task-Specific Search (Q2): Our
second research question is how much the choice of the
initial architecture impacts the performance of the architecture
search. To answer this question, we execute the task-specific
neural architecture search from two starting points: a hand-
designed architecture and the best generic architecture A

best

(Figure 2). Each architecture is evaluated based on model
complexity and validation set RMSE after 10-fold cross-
validation on the specific task.

Table I shows for each task, the NAS score of the best
architecture and the time taken by the search to find this
architecture from two different starting points (i.e., from hand-
designed architecture and from the best generic architecture
A

best). Runtime is represented as a percentage of the total
number of search iterations. Figure 4 compares the two search
results visually based on NAS score. For most tasks (i.e.,
route-direction combinations), we see that the best architecture

6

Architecture and Feature Search scores 

for all the tasks combined

Generic best 
architecture
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Results
RQ1: Task-specific vs Generally Optimized Architecture
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Fig. 2: Neural architecture search with score based on model
complexity and the average RMSE over all tasks.

fine-tunes the set of features, and the remaining 75% of the
time, it adjusts the hyper-parameters of the architecture search
space. For the feature set, we prepare a set of 6 different non-
sequential features and the occupancy of 10 preceding trips as
the sequential features. Since time information is crucial for
predicting the ridership of any route, we always include time
features (time of day and day of week) as part of the non-
sequential inputs. When the algorithm tunes the feature space,
it can pick either sequential or non-sequential features with a
uniform probability PF . The neuron change percentage �N

is chosen uniformly at random from [�25%, 25%] in each
step. The learning rate change percentage �↵ is either �20%
or 20%. The NAS algorithm runs for 6,000 iterations before
termination, and each architecture A in G is trained until
the learning converges. The training time of each architecture
varies based on model complexity and dataset size. Running
Algorithm 1 for 6,000 iterations on different datasets takes
around 4 to 5 days on average on 1 CPU node with 20 cores.

B. Numerical Results
1) Task-specific vs. Generally Optimized Architecture (Q1):

Our first research question is whether the architecture found
by a route-direction specific search outperforms a generally
optimized architecture. To answer this question, we first run
a generic architecture and feature search to find an optimal
architecture and feature set that work best on average for all
tasks, i.e., over all route-direction combinations. We start the
search with all available features and a hand-designed initial
architecture. The search algorithm proposes an architecture,
and for each task, trains a separate model to obtain an RMSE
score. For each task, we use 5–fold cross–validation to obtain
an average RMSE score. Finally, the architecture and feature
set are accepted or rejected by the search based on model
complexity and the average RMSE score over all the tasks.
This search returns an architecture and a feature set A

best

that work best on average over all tasks. Later, we also use
A

best as the starting architecture for the task-specific searches.
Figure 2 shows the first 900 scores of the accepted architec-

tures of the generic search. After trying around 600 different
architectures, the search reaches the best architecture based on
average RMSEs on the validation sets and model complexity.

For the comparison, we run task-specific architecture and
feature searches, where we optimize each architectures for
predicting the ridership of a specific route and direction.
The starting point of each task-specific search is the same
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Fig. 3: Comparison between architectures that were found by
generic (yellow ) and task-specific searches (blue ) based on
NAS score for each specific task.

TABLE I: Searches with Different Starting Architectures

Task
NAS from

Hand-Designed Architecture
NAS from

Optimized Architecture
Score Runtime [%] Score Runtime [%]

4-In 4.836 47.12 4.894 31.27
4-Out 5.239 65.48 5.056 31.53
1-In 3.675 36.00 3.714 18.57

1-Out 3.039 97.13 3.005 45.88
9-In 3.929 80.15 3.973 87.30

9-Out 3.799 73.23 3.963 86.63
2-In 2.144 61.25 1.973 96.67

2-Out 1.852 65.43 1.584 58.85
7-In 1.543 98.28 1.288 97.63

7-Out 2.030 61.93 1.961 99.03
Average 3.21 68.6 3.14 65.3

hand-designed initial architecture. We run the search for 6000
iterations and select the best architecture. Finally, we retrain
the best architecture found by the generic search (Figure 2)
on each task, and compare the results with architectures found
by task-specific searches.

Figure 3 shows the score after training a specific task
with both generic and task-specific architectures. There is a
clear gap between the two losses, which indicates that the
architecture and feature set found by the task-specific search
outperforms the ones found when optimizing for all tasks.
So, prediction error and model complexity can be reduced by
optimizing the hyper-parameters for a specific task.

2) Starting Architecture of Task-Specific Search (Q2): Our
second research question is how much the choice of the
initial architecture impacts the performance of the architecture
search. To answer this question, we execute the task-specific
neural architecture search from two starting points: a hand-
designed architecture and the best generic architecture A

best

(Figure 2). Each architecture is evaluated based on model
complexity and validation set RMSE after 10-fold cross-
validation on the specific task.

Table I shows for each task, the NAS score of the best
architecture and the time taken by the search to find this
architecture from two different starting points (i.e., from hand-
designed architecture and from the best generic architecture
A

best). Runtime is represented as a percentage of the total
number of search iterations. Figure 4 compares the two search
results visually based on NAS score. For most tasks (i.e.,
route-direction combinations), we see that the best architecture

6

Fig: Comparison between architecture that were found by generic 
(yellow    ) and task-specific searches (blue    ) based on NAS score 

for each specific task
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Results
RQ2: Starting Architecture of Task-Specific Search
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Fig. 4: Comparison between NAS scores attained for each
specific task by searches from the hand-designed architecture
(blue ) and from the best generic architecture (purple ).

found when we initialize the search with the already optimized
architecture (found in Section V-B1) performs slightly better.
This suggests that we may obtain better NAS results by
performing a generic search first, considering all tasks, and
then task-specific searches starting from the output of the first
search. Further, if we consider the runtime from Table I, we
see that the search can converge to the best architecture in
slightly less time for most tasks when we start the search from
an already optimized architecture.

3) Comparison among Architectures Optimized for Specific
Tasks (Q3): Our goal is to assess how an architecture that
was optimized for one specific task performs when we use
it to train models for other tasks. To this end, we take the
best architectures found by the task-specific searches, and we
use each architecture to train models for every task in our
dataset. Table II shows the NAS scores for all the models
based on a 10-fold cross-validation. Each row represents the
architecture optimized for a particular task, and each column
represents training a model using that architecture for one
particular tasks. Darker shades of red and green indicate
worse and better scores, respectively. Note that cells on the
diagonal show scores for models trained for tasks using their
corresponding optimized architectures. We see that for every
task, the architecture optimized for that particular task almost
always performs best; however, due to the randomness of the
search, there are some variations. The last row of Table II
shows the NAS score when each task is trained using the best
architecture found by the generic search (Figure 2). We can
see a significant performance drop in almost every case.

4) Relationship between Characteristics of Tasks and Opti-
mized Architectures (Q4): Figure 5 shows the characteristics
of each task in terms of dataset size and variance of occupancy
values as well as the complexity of the architecture found by
the task-specific search. We observe no obvious relationship
between the task and its optimized architecture; we leave a
more in depth study of possible relationships to future work.

VI. CONCLUSION

Accurate prediction of transit ridership provides significant
benefits by enabling transit agencies to prevent crowding and
passenger to better plan their travel. Due to the challenging
nature of this problem, we propose to improve prediction
accuracy by fine-tuning machine-learning architectures for
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(c) Model complexity of the best architecture

Fig. 5: Characteristics of the tasks and their optimized archi-
tectures.

each transit route in each direction—a task which could require
significant effort and time from machine-learning experts.
Our key contribution is proposing a framework for neural-
architecture and feature-set search, which alleviates the need
for fine-tuning by machine-learning experts, and demonstrat-
ing that our algorithms can significantly reduce prediction
error and model complexity based on real-world data. Further,
we found that performing a generic search to bootstrap the
task-specific searches may slightly reduce runtime; the fact
that searches converge to similar architectures regardless of the
starting architecture also shows the robustness of our approach.
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Fig. 4: Comparison between NAS scores attained for each
specific task by searches from the hand-designed architecture
(blue ) and from the best generic architecture (purple ).

found when we initialize the search with the already optimized
architecture (found in Section V-B1) performs slightly better.
This suggests that we may obtain better NAS results by
performing a generic search first, considering all tasks, and
then task-specific searches starting from the output of the first
search. Further, if we consider the runtime from Table I, we
see that the search can converge to the best architecture in
slightly less time for most tasks when we start the search from
an already optimized architecture.

3) Comparison among Architectures Optimized for Specific
Tasks (Q3): Our goal is to assess how an architecture that
was optimized for one specific task performs when we use
it to train models for other tasks. To this end, we take the
best architectures found by the task-specific searches, and we
use each architecture to train models for every task in our
dataset. Table II shows the NAS scores for all the models
based on a 10-fold cross-validation. Each row represents the
architecture optimized for a particular task, and each column
represents training a model using that architecture for one
particular tasks. Darker shades of red and green indicate
worse and better scores, respectively. Note that cells on the
diagonal show scores for models trained for tasks using their
corresponding optimized architectures. We see that for every
task, the architecture optimized for that particular task almost
always performs best; however, due to the randomness of the
search, there are some variations. The last row of Table II
shows the NAS score when each task is trained using the best
architecture found by the generic search (Figure 2). We can
see a significant performance drop in almost every case.

4) Relationship between Characteristics of Tasks and Opti-
mized Architectures (Q4): Figure 5 shows the characteristics
of each task in terms of dataset size and variance of occupancy
values as well as the complexity of the architecture found by
the task-specific search. We observe no obvious relationship
between the task and its optimized architecture; we leave a
more in depth study of possible relationships to future work.

VI. CONCLUSION

Accurate prediction of transit ridership provides significant
benefits by enabling transit agencies to prevent crowding and
passenger to better plan their travel. Due to the challenging
nature of this problem, we propose to improve prediction
accuracy by fine-tuning machine-learning architectures for
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tectures.

each transit route in each direction—a task which could require
significant effort and time from machine-learning experts.
Our key contribution is proposing a framework for neural-
architecture and feature-set search, which alleviates the need
for fine-tuning by machine-learning experts, and demonstrat-
ing that our algorithms can significantly reduce prediction
error and model complexity based on real-world data. Further,
we found that performing a generic search to bootstrap the
task-specific searches may slightly reduce runtime; the fact
that searches converge to similar architectures regardless of the
starting architecture also shows the robustness of our approach.
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NAS Scores for Models Trained for Various Tasks using Architectures Optimized for Different Tasks

Darker red = worse performance

Darker green = better performance

Diagonal cells -> model scores trained 
for tasks using their corresponding 
optimized architecture
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•Improving prediction accuracy by fine-tuning machine-learning architectures for each transit 
route in each direction is possible


•We proposed a framework for neural- architecture and feature-set search

•Alleviates the need for fine-tuning by machine-learning experts

•Significantly reduces prediction error and model complexity based on real-world data 

Thank you for your attention!!
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