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Decision Support
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State of the Art:
DISCLOSE Framework
• DISCLOSE (Nisioti et al. 2021) is a data-driven decision-support framework
• The objective of the framework is to maximize the benefit obtained during 

the investigation without exceeding a given investigation budget
• Investigation of each technique has a benefit and a cost (denoted by B and C)
• Budget is the total cost that the investigator can spend during the investigation

• DISCLOSE outperforms prior approaches, such as CBR-FT (Horsman et al. 
2014)
• Approach:

• Computes conditional probabilistic relations between techniques
• Computes proximity values between techniques (based on the life cycles of an 

attack)
• Recommends techniques based on these relations
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Limitation of DISCLOSE

• Decisions are based on heuristic likelihood values
• Decisions are myopic, considering only immediate benefit (but not 

subsequent steps of the investigation)
• DISCLOSE is a heuristic approach that does not approximate optimal 

decisions under some reasonable objective
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Our Approach: 
Investigation as a Markov Decision Process
• Model the cyber-forensic investigation of an incident as a Markov decision 

process (MDP)
• State space: state corresponds to the set of techniques investigated by step t, 

which were either employed (Yt) or not employed by the attacker (Nt)
• Action space: set of actions is the set of techniques A \ (Yt ∪ Nt) that have not 

been investigated by step t
• A is a set of all adversarial techniques

• Transition probability:
• probability that the chosen technique was employed by the attacker in the incident
• estimated based prior incidents (details later)

• Rewards:
• Ba if technique a was used (state ⟨Yt, Nt⟩ to state ⟨Yt+1, Nt+1⟩ = ⟨Yt ∪ {a}, Nt⟩)
• 0 if technique a was not used (state ⟨Yt, Nt⟩ to state ⟨Yt+1, Nt+1⟩ = ⟨Yt, Nt ∪ {a}⟩)
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Cyber-Forensic Decision Support Problem

• Policy π: 
maps a state ⟨Yt, Nt⟩ to a recommended action a ∈ A \ (Yt ∪ Nt)
• Objective is to find a policy that maximizes the expected rewards 

obtained during the forensic investigation:

where Tlimit is the last step before the investigation budget G is 
exhausted:
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Computational Approach
• To solve the decision-support problem, we propose a k-nearest neighbor 

(k-NN) based Monte Carlo tree search (MCTS)
• Monte Carlo tree search

• in each step of an investigation, run a search from the current state ⟨Yt, Nt⟩
• action selection: apply Upper Confidence Bound 1 rule to balance exploration and 

exploitation
• expansion: sample transitions with uniform probability
• backpropagation: use the transition probabilities (estimated by k-NN, discussed 

later) to update expected rewards
• Computational tricks (see paper for details)

• myopic pruning: focus on actions that are optimal w.r.t. myopic objective
• values estimation: estimate the value of unexplored states by assuming that 

probabilities would be frozen when expanding that state
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Probability Estimation

• Our goal is to estimate state-transition probability Pr[a | Yt, Nt] based 
on prior incidents

• computational challenge: there are a limited number of prior incidents, so 
empirical conditional probabilities may be inaccurate or inexistent

• Approach: use k-nearest neighbor regression to estimate probability
• non-parametric model estimates directly based on dataset
• distance metric: similarity between current and prior incident

• number of neighbors k is dynamically adjusted during the investigation
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Numerical Evaluation

• Baselines: 
DISCLOSE and a sta@c policy (i.e., fixed order of invesNgaNon)
• Three versions of MITRE ATT&CK Enterprise dataset (v6.3, v10.1, and 

v11.3 latest)
• our approach can be applied to newer versions without any changes
• leave-on-out cross validaCon (i.e., all other incidents are prior)

• For fair comparison, we consider the same 31 techniques as DISCLOSE
• Benefit and cost of each technique (same as DISCLOSE):

• benefit: based on Common Vulnerability Scoring System
• cost: based on interviews with cyber forensic experts
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Numerical Results

• Our approach outperforms both baselines on all datasets
• we considered two scenarios: investigation up to budget 45 and up to 65

• Running times are negligible compared to the investigation time
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Conclusion

• To address the limitaNons of DISCLOSE, we introduce a principled 
approach for cyber-forensic decision support
• Key challenge: limited prior data vs. large acNon space
• Proposed approach:

• model cyber-forensic invesCgaCon as Markov decision process
• k-NN for esBmaBng transiBon probabiliBes (non-parametric model makes 

best use of limited data)
• Monte Carlo tree search with computaConal tricks

• Our approach is computaNonally efficient and outperforms SOTA
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