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Securing Cyber-Physical Systems

• Securing cyber-physical systems is challenging 
• long lifetime

• difficult software updates

• resource and timing constraints

• …


→ Practically impossible to prevent all attacks 

• To mitigate losses arising from successful attacks,  
operators need to be able to detect attacks 
• detection enables reacting in time and preventing substantial losses



Examples of Stealthy Attacks

• Maroochy Shire incident 
• disgruntled ex-employee 

issued radio commands to 
SCADA sewage equipment


• on at least 46 occasions from 
February 28 to April 23, 2000


• caused 800,000 liters of raw 
sewage to spill out into local 
parks and rivers

• Stuxnet worm 
• targeted Iranian uranium 

enrichment facilities


• subtly increased the pressure 
on spinning centrifuges, while 
showing the control room that 
everything was normal


• reportedly ruined one-fifth of 
Iran's nuclear centrifuges



Intrusion Detection System (IDS)

• Monitors a system or network for malicious activity 
• network-based IDS: monitors traffic passing through to an entire subnet

• host-based IDS: runs on and monitors a single system


• For example, 
• by monitoring file system objects for modifications

• by detecting suspicious system call sequences


• Protecting the IDS 
• attackers may try to disable the IDS before an alarm is raised 
→ IDS needs to be running in order to detect the attack


• however, an effective IDS can be resource intensive



IDS for Cyber-Physical Systems

• Challenges 
• low performance devices ⟷ IDS can be resource intensive 


• battery powered devices ⟷ long system lifetime


→ IDS cannot be running continuously 

• Scheduling problem: When to run the IDS? 
• deterministic schedule 
⟷ attacker will launch its attack when the IDS is not running


• naïve randomization: uniform random 
⟷ attacker will target the points that will result in maximum losses


→ schedule must be tailored to the physical system



Scheduling  
Intrusion Detection Systems  

for Sensors in Water-Distribution Networks



Leakages in Water-Distribution Networks

• Leakages can cause 
• significant economic losses

• extra costs for final consumers

• third-party damage and health risks

• …

“worldwide cost of physical losses is over $8 billion”  
(World Bank, 2006) 

“6 billion gallons of water per day may be wasted in the U.S.”  
(Center for Neighborhood Technology, 2013)



Monitoring Water-Distribution Networks

• Pressure sensors can detect nearby events, such as leaks 
and pipe bursts  
 
 
 

• An attacker might compromise a subset of sensors and 
change their observations 
• both false alarms and undetected leaks can result in economic losses


• Host-based IDS may be deployed to detect cyber-attacks 
• however, battery-powered sensor devices pose a scheduling problem



Water-Distribution Network Model

• Network: graph G(V, E) 
• nodes V correspond to junctions

• links E correspond to pipes


• Sensors: node subset S ⊆ V 

• Detection:  
a sensor can detect a leakage at a pipe (i.e., link) if the distance 
between the sensor and the farther endpoint of the link is at most D

• Time: divided into T time-slots, denoted 1, …, T 

• Battery: each sensor can run IDS for at most B time-slots



Security Problem

• Schedule: for each time-slot t, the set St of sensors running IDS 
 

• Randomization:  
sets are activated in a random order to prevent an attacker from 
predicting which sensors are running IDS in a given time-slot 

• Attacker

• chooses a link    and changes the leakage report by compromising the sensors 

         that can detect link 

• minimizes the probability  
                     of detection   = 

• Optimal schedule: maximizes the probability of detection by IDS

distance is 1 plus the length of the shortest path to the node
from the end of link which is closer to the node.

We assume that time is divided into T timeslots, which are
denoted 1, . . . , T . Each sensor device is capable of running
IDS; however, this consumes battery power, which is limited.
Formally, we assume that each sensor can run IDS for at
most B timeslots.

2.1 Strategies
We model the security problem as a two-player Stackel-

berg security game between a defender and an attacker. The
defender’s strategic choice is to select a schedule, which we
represent as T subsets of S, denoted by S

1

, S

2

, and S

T

.
Since the schedule must be randomized, in practice the sub-
sets are rearranged into a random order, and in each times-
lot, those nodes will be running IDS that are members of
the subset corresponding to the timeslot. Consequently, we
can express the battery constraint as
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The attacker selects a subset of sensors A ✓ S, compro-
mises them, and changes the leak report. We can assume
that the attacker selects only subsets which lead to a fake
leakage report. Due to the randomization, the attacker does
not know which subset S

t

is running IDS at the time of the
attack. Consequently, the attacker does not have to choose
the time of the attack, and the probability of the attack
including a sensor that is running IDS is
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Note that, following Kerckho↵s’s principle, we assume that
the attacker knows the schedule (S

1

, . . . , S

T

), only their or-
der is unknown.

2.2 Payoff
We define the player’s payo↵s in a natural way: the de-

fender’s utility is the probability of detecting an attack,
while the attacker’s utility is the probability of not being de-
tected. We assume that an attack is detected i↵ it includes
a sensor that is running IDS. Thus, the the defender’s utility
is
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Finally, we can formulate the problem of finding the opti-
mal schedule as the following optimization problem:
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3. ANALYSIS
In this section, we study the problem of finding an optimal

schedule in general.

3.1 Attacker’s Best Response
First, observe that we can represent the attacker’s strategy

space simply by E: once the attacker has decided the link `

whose failure he is going to fake, the subset of sensors A(`)
to be compromised is given by the influence matrix M .
Consequently, the attacker’s best response is simply to

pick the link ` that leads to the lowest probability of getting
caught. For a given schedule (S

1

, . . . , S

T

), we can compute
this easily:
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3.2 Defender’s Optimal Schedule
First, we show that finding an optimal schedule for the de-

fender is computationally hard. We formulate the defender’s
problem as a decision problem as follows.

Definition 1. Secure Schedule Problem: Given a graph
G = (V,E), a set of sensors S ✓ V , a detection distance D,
a time horizon T , a battery power B, and a threshold util-
ity U⇤, determine if there exists schedule (S

1

, S

2

, . . . , S

T

)
such that the defender’s utility U is at least U⇤.

Theorem 1. The Secure Schedule problem is NP-hard,
even in the special case D = 2, B = 1, T = 2, and U⇤ = 1.

We show that the Secure Schedule problem is NP-hard
by reducing a known NP-hard problem, the 2-Disjoint Set
Covers problem [9] to the schedule problem. The 2-Disjoint
Set Covers problem is defined as follows.

Definition 2. 2-Disjoint Set Covers Problem Given a
set U and a collection C of subsets of U , determine whether C
can be partitioned into two disjoint set covers or not.

Proof. Given an instance of the 2-Disjoint Set Covers
problem (i.e., a base set U and a collection C of subsets),
we construct an instance of the Secure Schedule problem as
follows:

• for every u 2 U , create two nodes, denoted node u

1

and node u

2

, and connect them with a link;

• for every C 2 C, create a node, denoted node C, and
connect it to every node u

1

such that u 2 C;

• create two additional nodes, denoted node a
1

and node
a

2

, and connect both of them every node C 2 C;

• let the set of sensors S be the union of {a
1

, a

2

} and
the set of nodes corresponding to the elements of C;

• let the detection distance be D = 2;

• let the time horizon be T = 2;

• let the battery power be B = 1;

• and let the threshold utility be U⇤ = 1.

It is obvious that the above reduction can be carried out in
time that is polynomial in the size of the input. Therefore, it
remains to show that the Secure Schedule (SS) problem has
a solution if and only if the 2-Disjoint Set Covers (2-DSC)
problem does.
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In order to be resilient to attacks, a cyber-physical system
(CPS) must be able to detect attacks before they can cause
significant damage. To achieve this, intrusion detection sys-
tems (IDS) may be deployed, which can detect attacks and
alert human operators, who can then intervene. However,
the resource-constrained nature of many CPS poses a chal-
lenge, since reliable IDS can be computationally expensive.
Consequently, computational nodes may not be able to per-
form intrusion detection continuously, which means that we
have to devise a schedule for performing intrusion detec-
tion. While a uniformly random schedule may be optimal
in a purely cyber system, an optimal schedule for protecting
CPS must also take into account the physical properties of
the system, since the set of adversarial actions and their con-
sequences depend on the physical systems. Here, in the con-
text of water distribution networks, we study IDS scheduling
problems in two settings and under the constraints on the
available battery supplies. In the first problem, the objec-
tive is to design, for a given duration of time T , scheduling
schemes for IDS so that the probability of detecting an at-
tack is maximized within that duration. We propose e�cient
heuristic algorithms for this general problem and evaluate
them on various networks. In the second problem, our ob-
jective is to design scheduling schemes for IDS so that the
overall lifetime of the network is maximized while ensuring
that an intruder attack is always detected. Various strate-
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1. INTRODUCTION
Traditionally, cyber-security research has focused primar-

ily on preventing attacks from successfully penetrating sen-
sitive systems. However, as recent examples have shown,
motivated and resourceful attackers may be able to compro-
mise even highly secure and secluded systems. Consider, for
example, the Stuxnet worm, which was able to penetrate nu-
clear facilities [15, 17], or the successful attack against RSA,
a leading security company [23]. In light of these examples,
we must focus not only on the“first lines”of defense but also
on mitigating the e↵ects of successful compromises, thereby
increasing our system’s resilience to attacks.
Mitigating the e↵ects of successful compromises is possible

only if attackers are not able to inflict substantial damage
immediately after compromising the system, but only af-
ter some delay. This delay allows us to implement counter-
measures and prevent the system from sustaining significant

Scheduling Intrusion Detection Systems in

Resource-Bounded Cyber-Physical Systems

Waseem Abbas

⇤

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN 37212

waseem.abbas@vanderbilt.edu

Aron Laszka

†

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN 37212

aron.laszka@vanderbilt.edu

Yevgeniy Vorobeychik

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN 37212

yevgeniy.vorobeychik@vanderbilt.edu

Xenofon Koutsoukos

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN 37212

xenofon.koutsoukos@vanderbilt.edu

ABSTRACT
In order to be resilient to attacks, a cyber-physical system
(CPS) must be able to detect attacks before they can cause
significant damage. To achieve this, intrusion detection sys-
tems (IDS) may be deployed, which can detect attacks and
alert human operators, who can then intervene. However,
the resource-constrained nature of many CPS poses a chal-
lenge, since reliable IDS can be computationally expensive.
Consequently, computational nodes may not be able to per-
form intrusion detection continuously, which means that we
have to devise a schedule for performing intrusion detec-
tion. While a uniformly random schedule may be optimal
in a purely cyber system, an optimal schedule for protecting
CPS must also take into account the physical properties of
the system, since the set of adversarial actions and their con-
sequences depend on the physical systems. Here, in the con-
text of water distribution networks, we study IDS scheduling
problems in two settings and under the constraints on the
available battery supplies. In the first problem, the objec-
tive is to design, for a given duration of time T , scheduling
schemes for IDS so that the probability of detecting an at-
tack is maximized within that duration. We propose e�cient
heuristic algorithms for this general problem and evaluate
them on various networks. In the second problem, our ob-
jective is to design scheduling schemes for IDS so that the
overall lifetime of the network is maximized while ensuring
that an intruder attack is always detected. Various strate-

⇤The author contributed equally to this work.
†The author contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CPS-SPC’15, October 16, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3827-1/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2808705.2808711 .

gies to deal with this problem are presented and evaluated
for various networks.

Categories and Subject Descriptors
K.6.5 [Management Of Computing and Information
Systems]: Security and Protection

Keywords
Cyber-physical system, scheduling, intrusion detection sys-
tems, sensor networks, dominating sets, game theory

8s 2 S :
TX

t=1

1{s2S

t

}  B (1)

min
`2E

TX

t=1

1{A(`)\S

t

6=;} (2)

X

`2E

TX

t=1

1{A(`)\S

t

6=;} (3)

1. INTRODUCTION
Traditionally, cyber-security research has focused primar-

ily on preventing attacks from successfully penetrating sen-
sitive systems. However, as recent examples have shown,
motivated and resourceful attackers may be able to compro-
mise even highly secure and secluded systems. Consider, for
example, the Stuxnet worm, which was able to penetrate nu-
clear facilities [15, 17], or the successful attack against RSA,
a leading security company [23]. In light of these examples,
we must focus not only on the“first lines”of defense but also
on mitigating the e↵ects of successful compromises, thereby
increasing our system’s resilience to attacks.
Mitigating the e↵ects of successful compromises is possible

only if attackers are not able to inflict substantial damage
immediately after compromising the system, but only af-
ter some delay. This delay allows us to implement counter-
measures and prevent the system from sustaining significant
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1. INTRODUCTION
Traditionally, cyber-security research has focused primar-

ily on preventing attacks from successfully penetrating sen-
sitive systems. However, as recent examples have shown,
motivated and resourceful attackers may be able to compro-
mise even highly secure and secluded systems. Consider, for
example, the Stuxnet worm, which was able to penetrate nu-
clear facilities [15, 17], or the successful attack against RSA,
a leading security company [23]. In light of these examples,
we must focus not only on the“first lines”of defense but also
on mitigating the e↵ects of successful compromises, thereby
increasing our system’s resilience to attacks.
Mitigating the e↵ects of successful compromises is possible

only if attackers are not able to inflict substantial damage
immediately after compromising the system, but only af-
ter some delay. This delay allows us to implement counter-
measures and prevent the system from sustaining significant
losses, which is the key to increasing resilience. Due to the
unalterable physical attributes of CPS, many attacks against
CPS are inherently limited in how quickly they can cause
substantial damage. For example, in the Maroochy Shire
water-services incident, the attack lasted multiple months [3];
as another example, the Stuxnet worm drastically reduced
the lifetime of nuclear centrifuges, eventually destroying one-
fifth of Iran’s centrifuges [16]. Consequently, it is imperative



Computational Complexity

• We prove computational complexity for the special case  
D = 2, B = 1, and T = 2  

• We propose heuristic algorithms for finding schedules 
against both worst-case and random attackers

Theorem 1: Given an instance of our model, determining 
whether there exists a schedule that detects every attack 
with probability one is an NP-hard problem.



Heuristics for Worst-Case Attackers

• Simple greedy 
• start with an empty schedule


• assign sensors to the sets St iteratively, always choosing a feasible combination 
that maximizes detection probability


• Overlap minimization 
• assign sensors to the sets St iteratively, always choosing a feasible combination 

that minimizes overlap between sensors


• i.e., avoid covering links that are already covered in a time-slot


• Repeated set cover 
• iterate over the time-slots, finding a minimal set cover for each time-slot


• if there is no covering set of sensors left, maximize coverage using all the sensors



Numerical Evaluation

• Random graphs 
• geometric: nodes are drawn from a unit square uniformly at random, and two 

nodes are connected if their distance is less than 0.15


• Barabási-Albert (BA): starting from a clique of 2 nodes, each additional node is 
connected to 2 existing nodes using preferential attachment


• For both types, we generated 1000 graphs,  
each graph having 100 nodes 

• Real water-distribution network 
• 126 nodes and 168 pipes


• from Ostfeld et al.: “The Battle of the Water  
Sensor Networks (BWSN): A Design  
Challenge for Engineers and Algorithms”

Design Approaches

Fifteen sensor designs were submitted to the BWSN. This section
gives a brief description of each contribution.

Alzamora and Ayala !2006" suggested a general framework for
sensor locations using topological algorithms. Berry et al. !2006"
proposed a p-median formulation adapted from discrete location
theory to define the sensors location problem, which was further
solved using a heuristic method. Dorini et al. !2006" suggested a
constrained multiobjective optimization framework entitled the
noisy cross-entropy sensor locator !nCESL" algorithm, which is
based on the cross-entropy methodology proposed by Rubinstein
!1999". Eliades and Polycarpou !2006" proposed a multiobjective
solution, using an “iterative deepening of Pareto solutions” algo-
rithm. Ghimire and Barkdoll !2006a,b" suggested a heuristic
demand-based approach in which sensors were located at the
junctions with the highest demands !Ghimire and Barkdoll
2006a", or the highest mass released !Ghimire and Barkdoll
2006b". Guan et al. !2006" proposed a genetic algorithm
simulation–optimization methodology based on a single objective
function approach in which the four quantitative design objectives
were embedded. Gueli !2006" suggested a predator–prey model
applied to multiobjective optimization, based on an evolution pro-
cess. Huang et al. !2006" proposed a multiobjective genetic algo-
rithm framework coupled with data mining. Krause et al. !2006"
applied a greedy algorithm for the sensors locations, noting that a
limitation in the BWSN formulation was that the Zi !i=1,2 ,3"
objectives were being evaluated against only the scenarios that
were detected, thus not considering the effects of the undetected
scenarios, which might be critical. Ostfeld and Salomons !2006"
and Preis and Ostfeld !2006" used the multiobjective nondomi-
nated sorted genetic algorithm-II !NSGA-II" !Deb et al. 2000"
scheme. Propato and Piller !2006" used a mixed-integer linear
program to solve the sensors’ locations. Trachtman !2006" sug-
gested an engineering “strawman” approach for locating the sen-
sors taking into consideration factors such as population
distribution, system pressure and flow patterns, critical customer
locations, etc. Wu and Walski !2006" used a multiobjective opti-
mization formulation, which was solved using a genetic algo-
rithm, with the contamination events randomly generated using a
Monte Carlo scheme.

Case Studies

Two water distribution systems of increasing complexity were
used for the designs.

Network 1 !Fig. 1" was comprised of 126 nodes, one constant
head source, two tanks, 168 pipes, two pumps, eight valves, and
was subject to four variable demand patterns. The system was
simulated for a total extended period duration of 96 h.

Network 2 !Fig. 2" had 12,523 nodes, two constant head
sources, two tanks, 14,822 pipes, four pumps, five valves, and
was subject to five variable demand patterns. The system was
simulated for a total extended period duration of 48 h.

Both networks were real water distribution systems that were
“twisted” to preserve their anonymity. Space limitation prohibits
the description of all of their details !e.g., pipe lengths, base de-

Fig. 1. Layout of Network 1 !126 nodes, 1 source, 2 tanks, 168 pipes, 2 pumps, 8 valves"

Fig. 2. Layout of Network 2 !12,523 nodes, 2 sources, 2 tanks,
14,822 pipes, 4 pumps, 5 valves"
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Numerical Results / Geometric Graphs

S = V, D = 2, and T = 10

Algorithm 2 Overlap Minimization

1: for all t = 1, . . . , T do
2: S

t

 ;
3: end for
4: for all b = 1, . . . , B do
5: for all s 2 S do
6: t argmin
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cover exists, use all available to achieve maximal coverage.
The rationale behind this algorithm is that – with a good
set cover algorithm – we will use a small number of sensor
in each timeslot, and we can achieve complete coverage for
a large fraction of the timeslots. Note that we can plug any
set cover algorithm into the above heuristic, e.g., a greedy
approximation algorithm.

Algorithm 3 Repeated Set Cover

1: for all t = 1, . . . , T do
2: S

0  {s 2 S | s has been assigned to less than B

time slots}
3: if 8` : A(`) \ S

0 6= ; then
4: S

t

 greedy minimum cover of E using S

0

5: else
6: S

t

 S

0

7: end if
8: end for

4. NUMERICAL RESULTS
In this section, we present numerical results on the sim-

ple greedy (Algorithm 1), the overlap minimization (Algo-
rithm 2), and the repeated set cover (Algorithm 3) algo-
rithms. Note that we evaluated the latter using a greedy
algorithm for the set covering step.

We have evaluated our algorithms on three types of net-
works:

• Random geometric graphs: In these graphs, the nodes
are drawn from the area of a unit square uniformly at
random, and two nodes are connected if their distance
is less than a given threshold, which we chose to be
0.15 for the experiments. We used this random-graph
model in the numerical evaluation because it can cap-
ture the geographic nature of water-distribution net-
works.

• Barabási-Albert (BA) random graphs [6]: We gener-
ated random networks starting with cliques of 2 nodes
and connecting every additional node to 2 existing
ones. B-A graphs are widely used to construct syn-
thetic graphs as their heavy-tailed degree distribution
resembles real-world technological networks.

• Water-distribution network : We also compared our al-
gorithms using a water-distribution network from [21],
which has 126 nodes, 168 pipes, one reservoir, one
pump, and two storage tanks. The layout of the net-
work is illustrated in Figure 9. This benchmark water-
distribution network has been extensively studied in

the context of sensor placement problems for water
quality.

For each of the two random network types, we generated
1000 graphs, each having 100 nodes. Then, for each value
of the battery power B, we plotted the average utility over
these graphs.
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Figure 1: Comparison of various algorithms for
scheduling on geometric graphs with |V | = 100, S = V ,
D = 2, T = 10.

Figure 1 compares our scheduling algorithms on random
geometric graphs. We see that both the overlap minimiza-
tion and the repeated set cover algorithms perform well, the
latter being slightly better. On the other hand, the simple
greedy algorithm performs much worse than the other two.
In fact, the output of the simple greedy algorithm is actually
equal to a näıve solution that assigns each sensor to the first
B sets S

1

, . . . , S

B

, achieving B/T utility.
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Figure 2: Comparison of various algorithms for
scheduling on BA graphs with |V | = 100, S = V ,
D = 2, T = 10.

Figure 2 compares our scheduling algorithms on random
BA graphs. Similarly to the case of geometric graphs, we
see that both the overlap minimization and the repeated
set cover algorithms perform very well. However, in this
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Numerical Results / B-A Graphs

S = V, D = 2, and T = 10

Algorithm 2 Overlap Minimization

1: for all t = 1, . . . , T do
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cover exists, use all available to achieve maximal coverage.
The rationale behind this algorithm is that – with a good
set cover algorithm – we will use a small number of sensor
in each timeslot, and we can achieve complete coverage for
a large fraction of the timeslots. Note that we can plug any
set cover algorithm into the above heuristic, e.g., a greedy
approximation algorithm.

Algorithm 3 Repeated Set Cover

1: for all t = 1, . . . , T do
2: S

0  {s 2 S | s has been assigned to less than B

time slots}
3: if 8` : A(`) \ S

0 6= ; then
4: S

t

 greedy minimum cover of E using S

0

5: else
6: S

t

 S

0

7: end if
8: end for

4. NUMERICAL RESULTS
In this section, we present numerical results on the sim-

ple greedy (Algorithm 1), the overlap minimization (Algo-
rithm 2), and the repeated set cover (Algorithm 3) algo-
rithms. Note that we evaluated the latter using a greedy
algorithm for the set covering step.

We have evaluated our algorithms on three types of net-
works:

• Random geometric graphs: In these graphs, the nodes
are drawn from the area of a unit square uniformly at
random, and two nodes are connected if their distance
is less than a given threshold, which we chose to be
0.15 for the experiments. We used this random-graph
model in the numerical evaluation because it can cap-
ture the geographic nature of water-distribution net-
works.

• Barabási-Albert (BA) random graphs [6]: We gener-
ated random networks starting with cliques of 2 nodes
and connecting every additional node to 2 existing
ones. B-A graphs are widely used to construct syn-
thetic graphs as their heavy-tailed degree distribution
resembles real-world technological networks.

• Water-distribution network : We also compared our al-
gorithms using a water-distribution network from [21],
which has 126 nodes, 168 pipes, one reservoir, one
pump, and two storage tanks. The layout of the net-
work is illustrated in Figure 9. This benchmark water-
distribution network has been extensively studied in

the context of sensor placement problems for water
quality.

For each of the two random network types, we generated
1000 graphs, each having 100 nodes. Then, for each value
of the battery power B, we plotted the average utility over
these graphs.
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Figure 1: Comparison of various algorithms for
scheduling on geometric graphs with |V | = 100, S = V ,
D = 2, T = 10.

Figure 1 compares our scheduling algorithms on random
geometric graphs. We see that both the overlap minimiza-
tion and the repeated set cover algorithms perform well, the
latter being slightly better. On the other hand, the simple
greedy algorithm performs much worse than the other two.
In fact, the output of the simple greedy algorithm is actually
equal to a näıve solution that assigns each sensor to the first
B sets S
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, . . . , S
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, achieving B/T utility.
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Figure 2: Comparison of various algorithms for
scheduling on BA graphs with |V | = 100, S = V ,
D = 2, T = 10.

Figure 2 compares our scheduling algorithms on random
BA graphs. Similarly to the case of geometric graphs, we
see that both the overlap minimization and the repeated
set cover algorithms perform very well. However, in this
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Numerical Results / Real Water Network

S = V, D = 2, and T = 10

case, the former performs slightly better. Finally, the per-
formance of the simple greedy algorithm is again abysmal.
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Figure 3: Comparison of various algorithms for
scheduling on the water-distribution network with
S = V , D = 2, T = 10.

Figure 3 compares our scheduling algorithms on the water-
distribution network. Again, we see that the both the over-
lap minimization and the repeated set cover algorithms per-
form well, while the simple greedy algorithm performs much
worse.

5. MAXIMIZING THE NETWORK LIFE-
TIME WHILE ENSURING COMPLETE
COVERAGE

So far, we have focused on a setup where a scheduling
scheme is designed for a fixed duration of time with the
objective of maximizing the probability of detecting an at-
tack. In this section, we study a scheduling problem with
the objective of maximizing the overall lifetime of the net-
work while insisting on the complete coverage of the whole
network. Complete coverage here means the following con-
ditions are satisfied:

(a) Every edge failure ` 2 E (leakage in a pipe) can be
detected by some sensor under the model presented in
Section 2.

(b) An IDS is active on a node whenever a sensor at the
node is turned on to detect an edge failure, i.e., an
attack on an active node will always be detected.

We assume that every node in the network is equipped
with a sensor and an IDS, and the objective is to schedule
their turning on/o↵ to maximize the the overall lifetime of
the network while ensuring complete coverage. Before pro-
ceeding further, we define the closed neighborhood of a node
as following:

Definition 3. The closed neighborhood of a node i, de-
noted by N

i

, is the union of i and the set of vertices that
are directly connected to the node i through an edge.

Now, if D = 2 is assumed in the sensing model (i.e., an
edge failure is detected by the nodes in the closed neigh-
borhoods of the end nodes of the edge), then to achieve (a)

above, IDS and sensors need to be placed at the nodes that
form a so-called vertex 2-cover of the underlying graph of
the network. The vertex 2-cover is defined as

Definition 4. (Vertex 2-Cover) A vertex 2-cover C ⇢ V is
a subset of vertex set such that if `(u, v) is an edge of the
graph, then

9x 2 C : {x} \ (N
u

[N

v

) 6= ;
For the sake of simplicity, we say that a node v is active

if the corresponding sensor and IDS on the node are turned
on. Thus, to have a complete coverage with D = 2, the set
of active nodes should form a vertex 2-cover. Now, owing to
the limited battery power available at each node, there is a
constraint on the duration for which a node can be active.
Thus, the problem of maximizing the overall lifetime of the
network while maintaining complete coverage is related to
finding distinct vertex 2-covers under the constraints on the
number of times a node can be included in such vertex 2-
covers.

5.1 Dominating Set Based Problem Formula-
tion

Now, we see that instead of working with vertex 2-covers
of a graph for the complete coverage problem, we can utilize
the notion of more widely studied dominating sets.

Definition 5. A dominating set is a set of vertices, de-
noted by D, such that for every i 2 V , there exists some
j 2 D such that i 2 N

j

.

We observe that if D is a dominating set, then by the def-
inition, for every edge `(u, v) 2 E, there are some x, y 2 D
such that {x}\N

u

6= ; and {y}\N

v

6= ;. This leads to the
following observation:

Observation 1. A dominating set of a graph is also its
vertex 2-cover.

In other words, the network is guaranteed to be completely
covered whenever the set of active nodes form a dominating
set. Thus, in a way, the objective is to find distinct domi-
nating sets in a graph for the active nodes so that the overall
lifetime of the network is maximized. The problem of finding
distinct dominating sets under certain constraints has been
of great interests owing to its wide variety of applications
(e.g., [4, 13, 14, 22]). Thus, we use a dominating set based
formulation of the complete coverage problem to maximize
the network lifetime.
Let B be the time for which a node can be an active node,

and is a measure of the battery power of the node. Let S be
the set of all dominating sets in a graph. If t

i

be the time
for which the nodes in S

i

2 S are active, then the problem
is to find a subset S = {S

1

, · · · , S
r

} ✓ S so that

1. the network lifetime, T =
rP

i=1

t

i

is maximized.

2. no node is active for more than B duration, i.e.,

rX

i=1

t

i

1{v}\S

i

6=;  B, 8v

For the sake of simplicity, we assume t

i

= 1 from here on-
wards. Then the objective is to obtain the maximum num-
ber of distinct dominating sets in a graph such that a node
belongs to at most B distinct dominating sets.
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Heuristics for Random Attackers

• We constrain the detection distance D to be 2

• Sufficient condition for perfect detection 
• if every St is a dominating set, then every attack is detected


• dominating set:  
every node is either an element of the set or one of its neighbors is


• Heuristic approach:  
find a maximum set of dominating sets 



Finding Dominating Sets

• Disjoint dominating sets 
• partition the node set into pairwise disjoint dominating sets

• domatic number γ: maximum number of disjoint dominating sets

• achievable lifetime T = γB


• Non-disjoint dominating sets 
• we can achieve longer lifetime if the sets are not disjoint
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Figure 4: A graph has five distinct dominating sets indicated by the nodes with the same labels. Each node
belongs to two distinct dominating sets.

The above result is particularly useful as the R � disk

proximity graph model2, which is often used to model the
limited range communication in networks such as wireless
sensor networks, is always K

1,6

-free. As pointed out in [2],
a large number of graphs in this family have a domatic num-
ber of 2, thus, non-disjoint dominating set based strategy is
strictly better than the disjoint dominating set based strat-
egy in those cases.

6. COMPUTING (R, S)–CONFIGURATIONS
In this section, using a game theoretic setting, we present

an algorithm to assign s labels from a set of r labels to each
node such that the number of distinct labels in the closed
neighborhoods of all nodes is maximized. In the case (r, s)-
configuration of a graph exists, each node should have all r
labels in its closed neighborhood.

Let L = {1, 2, · · · , r} be the set of r labels, and Q be the

set of all s-element subsets of Q. Note that |Q| =

 
r

s

!
.

Moreover,

f : V �! Q (11)

i.e., f is a set function that assigns q 2 Q to each vertex in
a graph. Similarly, if N

i

represents the closed neighborhood
of a vertex i, then we define F (i) as follows:

F (i) =
[

j2N

i

f(j) (12)

If the assignment of labels to nodes, as in (11), is a valid
(r, s)-configuration, then F (i) = L, 8i. Thus, the objec-
tive is to obtain an assignment of labels that maximizes the
following:

Objective: max
f

X

i2V

|F (i)| (13)

2An edge exists between two vertices whenever the Eu-
clidean distance between them is at most R.

Note that the maximum value in (13) is r|V |, which is
achieved whenever the assignment of labels results in an
(r, s)-configuration.

6.1 Game-Theoretic Formulation
Game theory concepts have been extensively employed to

solve the locational optimization problems such as maxi-
mizing coverage on graphs (e.g., [24, 26]) and distributed
control of multiagent systems (e.g., [5, 19]). In one of the
approaches, the idea is to determine a potential function
that captures the overall global objective. The players’ indi-
vidual utility functions are then appropriately aligned with
the global objective such that the change in the utility of
the player as a result of unilateral change in strategy equals
the change in the global utility represented by the potential
function. The players’ strategies are then designed to en-
sure that local actions lead to the global objective. It turns
out that this sort of problem formulation and design can
be realized using a class of non-cooperative games known as
potential games, which are now extensively used for various
distributed control optimization problems.
A finite strategic game G(P,A,U) consists of a set of play-

ers P = {1, 2, · · · , n}, action space A = A

1

⇥A

2

⇥ · · ·⇥A

n

where A

i

is a finite action set of the player i 2 P , and a set
of utility functions U = {U

1

, U

2

, · · · , U
n

} where U

i

: A ! R
is a utility function of the i

th player.
If a = (a

1

, · · · , a
i

, · · · , a
n

) 2 A denotes the joint action
profile, we let a�i

denote the action of players other than
the player i. Using this notation, we can also represent a as
(a

i

, a�i

).
A game is a potential game if there exists a potential func-

tion, � : A ! R such that the change in the utility of the
player i as a result of a unilateral deviation from an action
profile (a

i

, a�i

) to (a0
i

, a�i

) is equal to the corresponding
change in the potential function. More precisely, for every
player i, a

i

, a

0
i

2 A

i

, and a�i

2 A�i

,

U

i

(a
i

, a�i

) � U

i

(a0
i

, a�i

) = �(a
i

, a�i

) � �(a0
i

, a�i

) (14)

B = 2



Finding Non-Disjoint Dominating Sets

• (r, s)-configuration: assignment of s distinct labels to 
each node from a set of labels {1, …, r}, such that for 
every label l and every node v, label l is assigned to  
node v or one of its neighbors 

Theorem 2: Let G be a graph such that  
- minimum degree is at least 2  
- none of its subgraphs is isomorphic to K1,6 
- and G ≠  
then G has an (r, s)-configuration with r = ⌊5s / 2⌋.

5.2 Approaches to Lifetime Maximization
In this subsection, we will consider two di↵erent approaches

to maximize the network lifetime while ensuring complete
coverage.

5.2.1 Disjoint Dominating Set Based Approach
One way to approach this problem is to partition the ver-

tex set such that each set in the partition is a dominating set,
and all dominating sets are pair-wise disjoint. Such a par-
tition is known as the domatic partition, and the maximum
number of (disjoint dominating) sets that can be obtained
is known as the domatic number, denoted by �. Since dom-
inating sets are pairwise disjoint in such a partition, each
vertex belongs to only one of the dominating sets. More-
over, since each node can be active for B time slots, each
dominating set can remain active for B time slots. If only
one dominating set is active at any time instant, which is
su�cient for the complete coverage, then the lifetime of the
network achievable through this approach is

T

dom

= �B (9)

The domatic partition problem has been extensively stud-
ied in the literature, and is known to be NP-hard [11]. Vari-
ous sensor scheduling schemes that utilize domatic partitions
have been proposed to maximize the network lifetime while
ensuring complete coverage (e.g., [22, 20, 25]).

5.2.2 Non-Disjoint Dominating Set Based Approach
Another way to approach the network lifetime maximiza-

tion while maintaining complete coverage is by using the
non-disjoint dominating sets of active nodes. Using this
approach, it is possible to obtain T � T

dom

. As an illus-
tration, consider the network shown in Figure 4. The graph
has a domatic number of 2 [12] and therefore, T

dom

= 2B.
However, it is possible to obtain T = 5

2

B = 5

4

T

dom

if non-
disjoint dominating sets are used as follows: Obtain five
distinct (non-disjoint) dominating sets such that each node
is included in at most two of the dominating sets as shown
in Figure 4. Activate each dominating set for the B/2 du-
ration. Since there are five dominating sets and each node
has a battery power for B duration, the network remains
completely covered for 5

�
B

2

�
time.

It can be noted that the overall network lifetime using
the non-disjoint dominating set based approach directly de-
pends, and is proportional to the number of distinct dom-
inating sets that can be obtained under the constraint on
the number of times a node can appear in a dominating set.
Moreover, the network lifetime obtained this way is always
going to be better or equal to the one obtained through
disjoint dominating set based strategy. The problem of
finding the maximum number of dominating sets under the
constraints on the number of times a vertex can be in-
cluded in a dominating set is related to the notion of (r, s)-
configurations [1, 12] as defined below.

Definition 6. Let s, r be two positive integers, and L =
{1, · · · , r} be the set of labels, then (r, s)-configuration of a
graph is the assignment of s distinct labels from the set L to
each vertex in the graph such that for every i 2 L and every
vertex v, the label i is assigned to v or one of its neighbors.

An example of (5, 2)-configuration is shown in Figure 4.
Note that the set of vertices corresponding to a particular

label in L constitute a dominating set. So, if a graph has
an (r, s)-configuration, it is possible to have r distinct dom-
inating sets in which a vertex can be included in at most
s such dominating sets. Thus, for a given s, finding the
maximum r, denoted by r

⇤, for which (r⇤, s)-configuration
of a graph exists is of particular interest. In fact, for a
given s, the maximum lifetime of the network that can be
achieved using non-disjoint dominating set based strategy is
T = (r⇤/s)B. Hence, the optimal network lifetime achieved
using the non-disjoint dominating set based strategy under
the battery power constraints (B) and complete coverage con-
dition is

T =


max

✓
r

⇤

s

◆�
B � T

dom

= �B (10)

where r

⇤ and s are such that an (r⇤, s)-configuration of
the graph exists.
A non-disjoint dominating set based strategy can now be

outlined as follows:

1 For a given graph, compute an (r, s) configuration such
that (r⇤/s) is maximum.

2 Let each time slot span B/s time unit.

3 Activate the nodes in a dominating set for the duration
of one time slot.

4 Since there are r⇤ distinct dominating sets, repeat step
3 for all such dominating steps.

The overall lifetime of the network obtained as a result
of the above strategy is

⇣
r

⇤

s

⌘
B. It can be noted that the

non-disjoint dominating set based strategy is strictly better
than the disjoint dominating set based approach whenever
(r⇤/s) > �. An important question is therefore, for a given
s, which graphs have (r⇤/s) > �? In this regard, first we
note that every connected graph has � � 2, and therefore,
for a given s, r⇤ is always at least 2s. However, there exists
many graphs for which � = 2, but r

⇤
> 2s. For instance,

many cubic graphs1 have a domatic number of 2, e.g., the one
shown in Figure 4. However, the following theorem asserts
that all cubic graph have r

⇤ � 5

2

s for a given s.

Theorem 2. [12] Any cubic graph has an (r, s)-configuration
with r = b5s/2c, and such a configuration can be found in
polynomial time.

Recently, it has been shown in [2] that the above result is
true even for a bigger class of graphs as stated in Theorem
3. Here, K

1,6

is a star graph with one central node of degree
six, and six end nodes each with a degree one.

Theorem 3. [2] Let G be a graph such that

– G has a minimum degree at least two,

– no subgraph of G is isomorphic to K

1,6

, and

– G 6= { , , , , , , , };

then G has an (r, s)-configuration with r = b 5s

2

c.
1graphs in which each vertex has a degree three.



Algorithm for Finding an (r, s)-configuration

• A: set of all s element subsets of the label set {1, …, r} 
• ai ∈ A: s element subset assigned to node i 
• Ui: number of labels made available by ai to the neighbors of node i that 

would not have been available to them otherwise

Algorithm 1 Binary Log-Linear Learning

1: Initialization: Pick a small ✏ 2 R
+

, and a random a

i

2
A for every i 2 V

2: Repeat
3: Pick a random node i 2 V , and a random a

0
i

2 A.

4: Compute P

✏

= ✏

U

i

(a0
i

,a�i

)

✏

U

i

(a0
i

,a�i

)
+ ✏

U

i

(a
i

,a�i

)
.

5: Set a
i

 a

0
i

with probability P

✏

.
6: End Repeat

4.2 Simulations
As in Section ??, we simulate the algorithm for three dif-

ferent networks including,

- Random geometric graph with n = 100 nodes dis-
tributed uniformly at random over a unit square area.
We assume that an edge exists between two nodes
whenever the (euclidean) distance between them is at
most 0.15.

- Barabási-Albert (BA) graph with 100 nodes in which
each new node is connected to two already existing
nodes as per preferential attachment strategy.

- Water distribution network with 126 nodes and 168
pipes as described in Section ?? [21].
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Figure 3: Deficiency of labeling as a function of
(BLLL) iterations in a random geometric graph with
100 nodes.

For all the networks, we assume r and s to be 5 and 2
respectively, i.e., each element is assigned two labels from
the set {1, · · · , 5} with the objective that all five labels are
available in the closed neighborhood of every node in the
network. Since the random geometric graph and the BA
graph each have 100 nodes, the maximum value in (14) is
|V |r = 100 ⇥ 5, and a labeling that achieves this value is
indeed a (5, 2)-configuration. To keep a track of how far a
given labeling is from becoming an (r, s)-configuration, we
define deficiency of the labeling as

Deficiency = |V |r �
X

i2V

������

[

j2N

i

f(j)

������
(19)
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Figure 4: Deficiency of labeling as a function of
(BLLL) iterations in a BA graph with n = 100.

where f(i), as previously, is the set of labels assigned to node
i. If a labeling is an (r, s)-configuration, then its deficiency is
zero. The output of Algorithm 1 for the random geometric
and BA graphs are shown in Figures 3 and 4 respectively.
For the water network, we note that nine nodes have a de-

gree of 1, i.e., have only one neighbor. Since every node has
two distinct labels, each of these nine nodes will be missing
at least one of the five total labels in their closed neighbor-
hoods. In other words, every labeling with s = 2 will have
a deficiency of at least nine. Figure 5 illustrates the best
possible labeling (having a deficiency of nine) obtained as a
result of Algorithm 1. The nodes containing each of the five
labels are also shown separately in Figure 6.
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Figure 5: Deficiency of labeling as a function of
(BLLL) iterations in the water network. The hor-
izontal line indicates the best possible value (nine)
of deficiency here.

5. CONCLUSIONS

• Support of the limiting distribution converges to the global optimum as the 
noise parameter approaches zero
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Figure 2: Randomg geometric graph with 100 nodes, in which nodes with an interaction radius of 0.15 are

drawn from the area of a unit square uniformly.
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Numerical Results / Real Water Network
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Figure 1: Water network.

1. T = Life-time of the network.

2. B = Battery life-time of one node (sensor/IDS).

How are plots generated?

• The (r, s) configuration is first computed for various values of r and keeping s = 2 fixed. Note that

T =

r
sB.

• Then, with the obtained labeling, we computed how many links are ‘covered’ in each time slot. There

are a total of r time-slots. Each node can be active in at most s time-slots.

• Average detection performance =

rP
i=1

No. of links covered in the ith time slot

Total no. of links ⇥ r .

• For random geometric graphs, each point on the plot is an average of 15 graphs.

1



Conclusion and Future Work

• Intrusion detection systems can increase the resilience of cyber-
physical systems through early attack detection 

• However, running them on resource-bounded devices requires 
efficient scheduling schemes 

• We studied IDS for sensors monitoring water-distribution networks  
• we showed that finding an optimal schedule is NP-hard


• we proposed heuristic algorithms for worst-case and random attacker


• we evaluated our algorithms using random graphs and an actual water network


• Future work:  
extend our work towards more general scenarios and physical 
models of other infrastructure networks 



Thank you for your attention! 

Questions? 


