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Abstract
Modern intelligent urban mobility applications are under-
pinned by large-scale, multivariate, spatiotemporal data streams.
Working with this data presents unique challenges of data
management, processing and presentation that is often over-
looked by researchers. Therefore, in this work we present an
integrated data management and processing framework for
intelligent urban mobility systems currently in use by our part-
ner transit agencies. We discuss the available data sources and
outline our cloud-centric data management and stream pro-
cessing architecture built upon open-source publish-subscribe
and NoSQL data stores. We then describe our data-integrity
monitoring methods. We then present a set of visualization
dashboards designed for our transit agency partners. Lastly,
we discuss how these tools are currently being used for AI-
driven urban mobility applications that use these tools.

CCS Concepts: • Information systems → Spatial-temporal
systems; Data mining; Information integration; • Applied
computing → Transportation.
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1 Introduction
With the proliferation of affordable sensor and networking
units, urban mobility systems are entering the connected
world at a rapid pace. This has led to a proliferation of re-
search related to improving the experience of using public
transportation. As use of public transit continues to increase,
transit agencies are looking to AI and machine learning to
make existing systems more efficient and thus maximize ex-
isting infrastructure.

AI methods in this context require data from a variety of
real-time streams from a variety of sources. For example,
traffic prediction and transit optimization applications require
high resolution traffic, vehicle telemetry, weather and road
network data. As image processing methods have continued
to progress, video streams offer potential insights to user
behavior and vehicle occupancy.

There are numerous challenges in storing and processing
data for AI-driven urban mobility systems. First, these sources
present data in domain-specific formats and at irregular inter-
vals that can vary by provider and source, making it challeng-
ing to join data streams to be used by downstream AI models
[17]. Second, the spatiotemporal nature of these data sources
presents challenges in efficient storage, synthesis and data re-
trieval [9], [16]. A third challenge is efficiently presenting the
data to AI researchers and transit experts for data exploration
[15]. In addition, there are the typical challenges of working
with high-velocity, high-volume streaming data.

Therefore in this work we present an integrated data man-
agement and processing framework for intelligent urban mo-
bility systems that is currently in use by the Chattanooga Area
Regional Transportation Agency (CARTA). We discuss the
available data sources and our experiences with joining the
various data streams for our set of AI driven applications.
We also discuss our methods for monitoring the integrity of
the data and present a set of publicly available visualization
dashboards designed for our transit agency partners. Lastly,
we discuss how these tools are currently being used for AI-
driven urban mobility applications in Chattanooga. Through
our partnership with transit agencies, we are making these
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Figure 1. Data architecture overview - real time data is streamed to an Apache Pulsar cluster consisting of 5 broker/bookie nodes
and 5 zookeeper nodes running on-site in VMWare. A MongoDB cluster running in Google Cloud reads from the Pulsar cluster,
continuously updating its data view and adding spatial indexing for monitoring and dashboard applications.

Table 1. Data sources.

Data Source Frequency Scope Features Schema/Format

Diesel vehicles ViriCiti and Clever Devices 1 Hz 50 vehicles
GPS, fuel-level, fuel rate,
odometer, trip ID, driver ID Viriciti SDK and Clever API

Electric vehicles ViriCiti and Clever Devices 1 Hz 3 vehicles
GPS, charging status, battery current,
voltage, state of charge, odometer Viriciti SDK and Clever API

Hybrid vehicles Viriciti and Clever Devices 1 Hz 7 vehicles
GPS, fuel-level, fuel rate, odometer,
trip ID, driver ID Viriciti SDK and Clever API

Traffic HERE and INRIX 1 Hz Chattanooga and Nashville region
TMC ID, free-flow speed,
current speed, jam factor, confidence

Traffic Message Channel
(TMC)

Road network OpenStreetMap Static Chattanooga and Nashville region Road network map, network graph
OpenStreetMap
(OSM)

Weather DarkSky 0.1 Hz Chattanooga and Nashville region
Temperature, wind speed,
precipitation, humidity, visibility Darksky API

Elevation Tennessee
GIC Static Chattanooga region Location, elevation GIS - Digital Elevation Models

Fixed-line transit
schedules CARTA, WeGO Static Chattanooga and Nashville region

Scheduled trips and trip times,
routes, stops

General Transit Feed Specification
(GTFS)

Video Feeds CARTA 30 Frames/Second
All fixed-line
vehicles Video frames Image

APC Ridership CARTA , WeGO Every Stop
All fixed-line
vehicles

Passenger boarding count
per stop Transit authority specific

tools open-source and providing access to the visualization
dashboards and data sets at [7].

2 Data Sources
In this section we outline the available real-time and static
data sources. A summary of the available data sources is
provided in table 1.

2.1 Real-time Data
CARTA’s vehicle fleet for the fixed-line bus transit system in-
cludes 50 diesel, 3 electric and 7 hybrid vehicles. Each vehicle
has a telematics kit produced by ViriCiti LLC that provides
real time telemetry data at a minimum of 1Hz resolution of
all available vehicle operating parameters. In total, we have
already obtained around 32.3 million data points for electric
buses and 29.8 million data points for diesel buses. The nature
of the telemetry data is dependent on the type of vehicle. For
instance diesel and hybrid vehicles include fuel level and fuel
rate where the electric vehicles monitor state-of-charge. All
vehicles include GPS and odometer data. Each data reading
from ViriCiti includes the label (i.e. GPS), a timestamp and a
unique vehicle ID. We collect this telemetry data in real-time
from the ViriCiti API [8].

Additionally, each vehicle is equipped with a kit from
Clever Devices [5]. This data includes GPS, unique vehicle
ID (which corresponds with the vehicle ID from ViriCiti) and
additionally includes a unique driver ID and the unique trip
ID which that vehicle is serving. The unique vehicle ID maps
directly to the GTFS schedule produced by CARTA.

We also collect weather data from multiple weather sta-
tions in Chattanooga at 5-minute intervals using the DarkSky
API. This data includes real-time temperature, humidity, air
pressure, wind speed, wind direction, and precipitation. In
addition, we collect traffic data at 1-minute intervals using the
HERE API, which provides speed recordings for segments of
major roads, which provides data in the form of timestamped
speed recordings from selected roads. Every road segment
is identified by a unique Traffic Message Channel identifier
(TMC ID). Each TMC ID is also associated with a list of lati-
tude and longitude coordinates, which describe the geometry
of the road segment. Lastly, vehicles are currently being fitted
with video equipment that generates real-time video streams
to help monitor capacity requirements.
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2.2 Static Data Sources
Road network map data was collected from OpenStreetMaps
[11], which provides road infrastructure modeled as a graph.
In addition, we collect static GIS elevation data from the
Tennessee Geographic Information Council [14]. From this
source, we download high-resolution digital elevation models
(DEMs), derived from LIDAR elevation imaging, with a ver-
tical accuracy of approximately 10 cm. We incorporated the
elevation data in the OSM network by adding the elevation
from the GIS data to each node in the OSM network. Lastly,
the vehicle scheduling information is provided by the CARTA
in GTFS format.

3 Data Management
Given the volume and the rate of the data being collected,
we had to design a custom architecture for the project. The
purpose of this architecture is to store the data streams in a
way that provides easy access for offline model training and
updates as well as real-time access for system monitoring
prediction. This architecture consists of a publish-subscribe
cluster implemented with Apache Pulsar, which stores topic-
labeled sensor streams, and a MongoDB database backend.
An overview of the data architecture is provided in figure 1.

This architecture solves two challenges. The first challenge
is the persistent storage of the high-velocity, high-volume
data streams. The second challenge is that the data is highly
unstructured and irregular and different data streams have to
be synchronized and joined efficiently. With this architecture,
we stream each data source to a topic-based publish-subscribe
(pub-sub) layer that persistently stores each data stream as a
separate topic. Further, we used a three-tiered naming conven-
tion for topic labeling. The first tier represents the name of
the data tenant and all authentication and access is managed
at this level. The second tier is the data category, i.e., vehicle
telemetry, traffic, weather, etc. The third tier is the topic name,
which represents the data source or provider, such as ViriCiti,
HERE, or DarkSky. For ViriCiti, the fleet name is appended
to the topic name to separate electric, diesel, and hybrid ve-
hicles. The tenant, category, and topic names together form
a topic, which downstream applications can use to access
the data streams. We persistently store all messages on each
topic in an append-only ledger. Therefore, the topic can be
used to read data in near real-time or to playback previous
data streams to synchronize new downstream applications.
All replication is handled at the ledger level, which allows
downstream storage and applications to adapt and expand
without concern for data resiliency. For this system we used
Apache Pulsar [1] due to its native support for authentication
and access at the tenant level and high throughput. We run
Pulsar on-site on a VMWare cluster.

We include two methods for long term, structured access
to the data streams. First, Pulsar includes support for Presto
SQL which is a distributed SQL query engine for big data

Input Streams
- Viriciti

- CleverDevices
- DarkSky

- HERE (traffic)
- Video Feed

Merge
Function

Output Stream
- Vehicle ID

- Trip ID
- Route ID

- SOC
- OSM Segment

- Timestamp
- Temperature

- Humidity
- Elevation

MongoDB Query
Static Data

Figure 2. An example stream data join. Real-time telemetry
and routing data from CleverDevices and Viriciti is combined
with weather from DarkSky, traffic from HERE and the video
feed. The output stream includes all fields from these sources,
as well as static data from OSM, GTFS and elevation. The
output stream is a sliding time window at 5 second intervals.

[6]. Presto SQL integrates with the Pulsar data stores to pro-
vide an SQL interface on top of the Pulsar topics. This is
useful for analytics teams comfortable with SQL, however
as it is designed for large scale batch queries and does not
support geospatial indexing it is not optimal for user-centric
applications such as visualization dashboards. Therefore, we
implemented a downstream MongoDB [2] cluster running in
Google Cloud. MongoDB was chosen for its native support
of geospatial, r-tree indexing which optimizes our system for
aggregate geospatial queries for monitoring and visualization
applications discussed in the next section.

4 Data Synthesis and Stream Processing
The various downstream applications such as monitoring
systems, visualization dashboards and energy and ridership
prediction models require data from various streams to be
merged. Typical implementations of stream processing ar-
chitectures require external processing frameworks such as
Apache Spark and Storm. For our implementation we decided
to join the data streams within Apache Pulsar. This process in-
volves designing functions that read from a set of data stream
topics, merge the streams in a series of time windows, and
output the joined data on a new Pulsar topic.

As our framework has expanded, we are running numer-
ous streaming join functions within Pulsar. An example is
provided in figure 2, which outputs a data stream that is used
for our energy prediction models and energy dashboard. The
input is the telemetry data from Viriciti, route, trip and dri-
ver data from Clever Devices, weather from DarkSky, traffic
from HERE and the video feeds. Additionally, our predictive
models rely road level information from OSM. As this data
is static the latest OSM network is stored in a MongoDB
collection which the function queries each evening to keep
up-to-date. These data sources are merged at 1 second time
windows, which is the resolution required by the predictive
models.
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Running our stream processing applications within Pul-
sar has two benefits. First it provides real-time access to
consumers that subscribe to the output topic of these appli-
cations. Second, we include a subscriber that continuously
adds geospatial indexing the streams and writes to MongoDB.
One disadvantage of this approach is that there is some ad-
ditional overhead regarding development time working with
the Pulsar API’s instead of more mature, streaming specific
frameworks. However since we do not require the overhead
of incorporating a separate stream processing framework we
are able to reduce complexity of the overall system and re-
duce costs that would be associated with running this external
system.

5 Data Monitoring
The incoming data, particularly vehicle telemetry data is pro-
vided by cutting edge telemetry kits from our partner com-
panies ViriCiti and Clever Devices. These kits are installed
on a variety of fleets bought over the last 25 years, each with
different specifications and requirements. The challenges as-
sociated with this work require careful monitoring to ensure
the quality of the incoming data. Additionally, it is useful to
monitor our data architecture itself to identify gaps in cov-
erage or failures in the system. Therefore we implemented
a custom monitoring system to notify our data management
team and CARTA of when issues arise.

Our monitoring includes automated programs which send
nightly emails summarizing the state of the system as well
as the incoming data. We use historical data regarding the
number of messages on each topic per day of the week to
compare with the number of messages on that topic over the
previous day. If the number of messages over the previous day
was more than two standard deviations less than expected, an
email is triggered to notify us there was a discrepancy on one
of the data streams. This application runs on all registered
topics within Pulsar.

We found that this monitoring application was insufficient
regarding the ViriCiti data since failures with the telemetry
kits were highly correlated between vehicle models. For in-
stance, early in this project there were issues regarding the
kits for the 10 diesel vehicles bought in the late 1990s. Since
these had issues immediately, they never showed up in the
historical averages and thus were not identified as an issue.
Therefore, a second application was designed specifically for
the ViriCiti data. This application queries all vehicles, iden-
tified by unique vehicle ID, that serviced a trip that day. We
then query the ViriCiti data to ensure there was telemetry data
on that vehicle during that time window.

6 Visualization Dashboards
As our framework developed, we also implemented a set of
visualization web dashboards using Python, Plotly and Dash.
These dashboards are connected to our MongoDB backend

(a)

(b)

Figure 3. Energy visualization dashboard: (a) energy con-
sumed per route for electric vehicles from January 1, 2020 to
May 1, 2020. (b) Energy consumption per fleet between Janu-
ary 1, 2020 to May 1, 2020. Energy measured in kWh/Mile.

to query data for presentation to the user. An example of our
energy visualization dashboard is shown in figure 3. In this
dashboard, the user can query based on time, fleet and route.
The data is presented to the user over the map of Chattanooga
as shown in figure 3a and as a series of statistical visualiza-
tions, one of which is energy per fleet as shown in figure 3b.
This dashboard is used by the data management team and
CARTA to monitor the performance of the CARTA fleets
over time and is available to the public [3]. Additionally, we
developed a ridership dashboard to visualize occupancy of
the vehicles throughout the bus transit network. The presen-
tation of the occupancy dashboard is similar to the energy
dashboard, and is available at [4].

7 AI Applications
In addition to the visualization dashboard applications, we
are currently running a set of AI applications that rely upon
the data management framework and data sources discussed
in this paper. The first of which is an energy prediction model
presented in [10]. These prediction models use the output
features as shown in figure 2 to train regression and neural
network models to predict the energy that will be consumed
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on a route by the diesel, hybrid and electric vehicles. We
are currently working on incorporating these models in the
energy dashboard to help CARTA with vehicle scheduling
and operational guidance.

Additionally, we are working training statistical models
to predict vehicle occupancy to better schedule vehicles in
the context of social distancing regulations from COVID-19.
In this way we can help to ensure these safety requirements
are met and help CARTA better schedule vehicles on popular
routes. These models will be incorporated in the ridership
dashboards so CARTA operators have real-time access to
these models.

8 Conclusion and Future Work
In this work we presented our integrated data management
and processing framework for intelligent urban mobility sys-
tems, which is currently in use by our partner transit agencies.
We also covered our associated monitoring systems, visual-
ization dashboards and briefly discussed the current AI appli-
cations using these tools which we are making open-source
and providing access to the visualization dashboards and data
sets at [7].

In future work we are interested in investigating decen-
tralized edge-cloud hybrid architectures for AI-driven urban
mobility systems. We have done some work on AI-driven,
decentralized routing applications using federated learning
[18] and fog-cloud middleware for smart mobility systems
[12], [13]. We are interested in studying problems related to
data storage and retrieval for these systems in future work.
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