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Abstract—Cyber attackers often use passive reconnaissance
to collect information about target networks. This technique
can be used to identify systems and plan attacks, making it
an increasingly challenging task for security analysts to detect.
Adversaries can recover statistical information from the informa-
tion collected from compromised nodes, revealing target identities
such as operating systems, software and servers. A comprehensive
analysis of the collected data can aid in understanding what
information an adversary can deduce from this technique. With
this analysis, the defender can examine the methods of inferring
a target used by adversaries and model adversaries’ inference
techniques and belief formation. For this purpose, we propose a
model-driven decision support system (DSS) based on a Bayesian
belief network (BBN) to depict adversary node-based inference
techniques from passively collected data and belief formation.
BBN provides a compact representation of probabilistic data and
allows the formalization of adversary beliefs. We demonstrate
this approach with a case study based on the passively observed
operating system (OS) fingerprinting data, which is evaluated
utilizing p-value significance level and compared against the
model generated from local networks and predictive accuracy. We
also show that our methods produce models with high predictive
accuracy surpassing a sequential artificial neural network (ANN).

Index Terms—Bayesian Belief Network, Adversarial Belief
formation, Reconnaissance

I. INTRODUCTION

In recent years, attackers have prioritized stealth to remain
undetected by defenders and intrusion detection systems (IDS)
in their target networks [1]. They employ a variety of methods
to collect information passively, which is then leveraged
to exploit various vulnerabilities. Existing methods, such as
firewalls and intrusion detection systems, cannot secure a
network completely against such attacks [2]. Data breaches by
stealthy attackers can cause severe damage to organizations,
and they take longer to identify and might not be detected
at all in some cases. According to Ponemon’s 2017 study,
organizations that required over 30 days to identify a breach
incurred 51% higher costs compared to organizations that
identified breaches in under 30 days [3]. A delay in detecting
adversarial reconnaissance can enable an adversary to gather
sensitive information from a network. Therefore, the ability
to mitigate the threats posed by these stealthy attackers has
significant relevance for any organization.

Although much research has been conducted on attack
graphs and the paths leading to target nodes, where sensitive

information or potential vulnerabilities exist [4]–[6]; limited
works are focusing on the inference technique from passively
collected data from this node.

For example, Pham et al. [1] developed a reconnaissance
model for stealthy adversaries, demonstrating that such attack-
ers can conduct effective network reconnoitering by eaves-
dropping and capturing packets to infer a network topology
graph based on their view of the network. Nonetheless, this
study does not illustrate specific techniques used by attackers
for deriving conclusions from collected information. As a
network contains several nodes, protecting all of them is
nearly impossible. The defender can select which nodes have
vulnerable information and can build a model to determine
features associated with the node that leads to identifying the
target information for better defensive or deceptive strategies.

a) Contributions: In order to understand the adversaries’
perspective, we examine how attackers use inference tech-
niques to gain information from passively monitored traffic.
In this paper, we explore the features associated with a node
and build a model based on the data that adversaries can
potentially collect in order to understand their perspective.
We propose a decision support system (DSS) leveraging a
Bayesian belief network (BBN). Our proposed DSS utilizes
passively collected data associated with operating system
features to construct and represent critical knowledge. We use
the BBN to learn the data, analyze features and formalize the
attacker’s beliefs that can aid in OS identification. Various
techniques for identifying operating systems have been studied
in recent years. These include, leveraging characteristics of
ICMP packets [7], using naı̈ve Bayesian classifier to determine
a host’s OS passively and using various machine learning
algorithms [8]–[10]. However, analysis and data interpretation
are crucial for algorithmic decision-making and modeling
attacker belief formation. We analyze the generated traffic
based on OSes using the proposed DSS and perform inference
based on the BBN to find the features that make it easy
to distinguish one OS from another. For example, from our
proposed DSS we observe TCP features of Mac and iOS are
almost identical—thus, the use of TCP features significantly
increases the probability of misclassifying iOS as Mac and
vice versa [11]. A counterexample would be Android. Due
to distinctive TCP features, it is easily distinguishable from
other operating systems, including iOS, Mac, and Windows.
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Thus, creating a detailed data-driven model can be useful for
extracting sensitive information. To protect the network, we
also utilize the attacker’s belief in the model for better security
countermeasures.

Our graphical models can be learned using a variety of
passively collected network and traffic data. We use BBN to
model the belief structure. Due to their scalability and noise
resilience, BBNs are widely applied in data analysis. They
have been commonly used in the literature to represent joint
distributions compactly and to perform scalable methods for
general inference [12], [13].

The paper makes the following contributions to the litera-
ture: it provides a methodology for building a BBN from real
network data that can support a model-driven decision support
system (DSS) capable of (i) analyzing variables/features and
(ii) depicting the adversaries’ belief formation and target infer-
ence processes. We present a case study in OS fingerprinting,
but the methodology is intended for a wide variety of cyber
reconnaissance such as network (or computing) infrastructure,
software running, scanning tools. Section II provides a brief
overview of the Decision Support System (DSS) framework
and Bayesian Belief Networks (BBNs). Sections III and IV
then demonstrate how decision-makers can build a BBN-
driven DSS for adversaries’ belief formation and target infer-
ence processes. This model is evaluated in Section V, followed
by related work discussed in Section VI. Finally, the paper
concludes with a summary and an outlook for future research
opportunities in Section VII.

II. DECISION SUPPORT SYSTEM FRAMEWORK

As the framework for DSS we develop a model-driven
decision support system that allows users to build models
from data. It has three components: a database module, model
management module, and a dialog module.

1) Database module: Where data collection is performed
by using tools and storing it in a database.

2) Model management module: We divide the model
management module into two parts: (i) model parameter
selection and (ii) model selection.

(i) Model parameter selection: Decision-makers
must first select a finite set of possible candidates,
P = {p1, p2, . . . , pN}, for the decision-making
problem. For instance, they need to decide which
elements should be protected, such as an operating
system, software, network, or combination thereof.
Additionally, select criteria C = {c1, c2, . . . , cn}
in order to reflect the quality of each alterna-
tive. Herein, ci denotes the ith criterion with
i = {1, 2, . . . , L}. For instance, when it comes to
OS information, criteria for feature selection may
include TCP/IP network stack features, user agents
HTTP, the combination of TCP/IP and HTTP or
an information gain algorithm to select a subset of
features. In this study, we have selected TCP/IP
network stack feature selection as our criterion

since it is easily collected passively. [2]. Models
can then be built by selecting various criteria.

(ii) Model selection: Once a modeler selects candidate
and relevant information, they can construct mod-
els using the data in accordance with the problem
and the practicality of implementation. Here, we
employ a graphical model (i.e., a Bayesian belief
network) that allows users to enter and modify
inputs and access the data.

3) Dialog module: Once the model is generated, users
can interact with the model and perform sensitivity or
what-if analysis about the variables in the model. These
queries can involve diagnostic reasoning (inference from
effects to cause), causal reasoning (top-down inference),
or inter-causal reasoning (given two mutually exclusive
causes, evidence on one of them “explains away” the
other one) as a means of gaining further understanding
into the problem and prospective solutions.

A. Bayesian Belief Networks

A Bayesian belief network (BBN) is a pair (G,O) that
encodes a joint probability distribution over a finite set X =
{X1, ..., Xn} of categorical variables. It consists of a directed
acyclic graph (DAG) G = {V,E,Θ}, in which nodes V
represent the variables in X , and edges E represent direct
dependencies between variables, as well as a collection of
conditional probability mass θ ∈ Θ for each node. These
conditional probabilities define the behavior of each variable,
Xi, given its parents,

∏
i, in the graph [14]. The Bayes network

follows the equation:

P (X1 = x1, X2 = x2, . . . Xn = xn) =
n∏
i

P (Xi = xi |Parents(Xi))

where Parents(Xi) denotes the parents of the node Xi, in
the graph. The representation of the full joint table, P (X),
requires an exponential number of variables. This complexity
can be avoided by using the Markov condition, which states
that in a Bayesian network, every variable is conditionally
independent of its non-descendant non-parents, given its par-
ents. Using this condition, the joint table can be expressed in
a compact form as the product of local mass functions.

B. Optimal Structure and Parameter Learning

We can learn a BBN’s graphical structure and parameters
from data. We aim to construct a methodology to represent
cyber reconnaissance information using a knowledge graph
to develop a DSS based on the data. Consider a data set
D of d data points D = {x1, x2, x3, x4, x5, . . . , xd}, we
first determine variables to include in the graph. Then we
determine the structure that best describes the joint proba-
bility distribution over the data set. Usually, without expert
knowledge, we can use search-and-score methods to construct
BBN’s [15]. We learn the structure of graph G based on the
data D, Pr(G | D). Finally, we extract a specific number of
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observations to examine the parameters, given the DAG and
the data Pr(Θ | G, D). This is given by:

Pr(Θ | G, D) =

N∏
i=1

Pr(ΘXi |Πpa(Xi))) (1)

where Πpa(Xi) represents all possible combinations of parents
of Xi Combining the previous structure learning, we obtain
the following:

Pr(G,Θ | D)︸ ︷︷ ︸
learning

= Pr(G | D)︸ ︷︷ ︸
structure learning

.Pr(Θ | G, D)︸ ︷︷ ︸
parameter learning

(2)

III. METHODOLOGY: BAYESIAN BELIEF NETWORK

We intend to build a Bayesian belief network (BBN) model
that will capture (1) the causal relationships between random
variables that take values from the collected data and (2)
a formalism for reasoning about beliefs under conditions of
uncertainty. We begin with a dataset description followed by
describing the methods for constructing a BBN from network
traffic data that support the above from the collected passive
information. We describe general techniques for building a
BBN from network traffic data in multiple steps: (1) dimension
reduction, (2) discretization of variables, (3) model selection
and (4) inference.

A. Dataset Description

We use a publicly accessible PCAP file with detailed
network traffic data CIDSS [16], including data useful for
passive OS fingerprinting. We evaluate our model on a subset
of the dataset, for which we convert the CIDSS PCAP file to
CSV using TShark, a network protocol analyzer. It can read
packets from a previously saved capture file and convert the
decoded form of those packets to the standard output or write
the packets to a file. We selected 10.7 million TCP packets
from the 11.7 million records in the CSV file.

B. Dimensional Reduction and Feature Selection

Dimension reduction means reducing the number of factors
or parameters requiring estimation; dimension reduction can
eliminate some irrelevant and/or redundant dimensions. Some
reduction techniques are feature analysis and cluster analysis.
For dimension reduction, we consider feature analysis specific
to operating system types (e.g., Windows, Mac, and Linux)
and not operating system versions. For this case, the TCP/IP
features are most suitable. We select features based on
the literature and the features utilized by operating system
identification tools [9], [17]. The selected features from the
pcap file are time to live (ttl), TCP window scaling option
(op wscale), window size value (win size), header length
(hdr len), window scaling factor (wscf), maximum segment
size (mss), data fragment bit (flag.df), SACK permitted
(SACK), No Option (nop). Further details of the features can
be found in [18].

Feature Extension and Wireshark Analysis: The binary
values of certain features may not be suitable for use as node

variables. An example is the analysis of TCP packets with
Wireshark, in which a value of one for nop can indicate that
a nop exists in the packet. Depending on other TCP options
present, such as SACK permitted (SACK), window scaling
factor (wscf), maximum segment size (mss), and timestamp,
more than one nop may be observed in a single packet. To
account for this complexity, we have created a new feature
called tcp comb to represent combinations of TCP options
observed. This feature assigns one value from array A con-
taining sixteen possible combinations based on whether or not
SACK, wscf, mss and timestamp are present in a packet. We
use s, m, w, t to denote these four features: SACK permitted
(SACK), maximum segment size (mss), window scaling factor
(wscf), and timestamp. Sign + and - indicate value observed
or not observed in the packet, respectively. Array A includes
[+s+m+w+t, +s-m+w+t, +s+m-w+t, +s-m-w+t,+s+m+w-t,+s-
m+w-t, +s+m-w-t,+s- m-w-t,-s+m+w+t, -s-m+w+t, -s +m-w+t
, -s-m-w+t, -s+m+w-t, -s-m+w-t, s+m-w-t, -s-m-w-t], sign +,-
indicate s, m, w, and t value observed or not observed.

Wireshark Analysis: We observed the feature TCP window
scaling option from Wireshark, which identifies the scaling
factor to be used when using window sizes larger than 64k.
We found identifier contains unique values; we observe the
Wireshark packet and the value usually the following by
analyzing TCP packets from various operating systems from
different networks op wscale = [30301, 30302, 30303, 30304,
30305, 30306, 30307, 30308, 30309, 3030a, 3030b, 3030c,
3030d, 3030e]. As a results we consider TCP window scaling
option as a feature (op wscale).

Missing States: If collected information contains missing
values and requires discretization, modelers need to handle
it prior to building the model. Our dataset contains a low
percentage of missing values. We use standard imputations
such as median and constant imputation corresponding to OS
to handle missing values for window size and ttl. For other
features, if data contains missing values we impute with zero.

Discretization: We use equal bins of the following
ranges for window size: (-66.0, 13107.0], (13107.0, 26214.0],
(26214.0, 39321.0], (39321.0, 52428.0] and (52428.0,
65535.0]. We replace -66 with -1. Note that the range starts
from -1 but is excluded as window sizes cannot be negative

C. Model Selection

Once preprocessing is complete, modelers need to select
an appropriate model. Heuristic search algorithms such as
simulated annealing, greedy search algorithms and genetic
algorithms are often used for uncovering the structure and
parameter estimates of the Bayesian belief network (BBN).
However, it has been observed that these search algorithms
may not work well when there is insufficient or noisy data [19].

We create the Bayesian network using the following steps.
1) Manual Construction and Expert Knowledge: We

manually construct a dependency graph using literature,
wireshark analysis, chi-square independent test and sig-
nificance level to connect nodes with edges according
to direct dependencies. For example, the Time-To-Live
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Fig. 1. Bayesian network

(TTL) is specific to an Operating System (OS), and
thus directly dependent on it [20]. Additionally, window
scaling factor corresponds to the size of the window
as it resolves scalability issues with receiver window,
advertised window or user buffer without increasing
its size [20]. Furthermore, we use header length as a
child node of maximum segment size (MSS). When the
transport layer receives payloads, MSS can be observed
and different header lengths may result in this observa-
tion [21].

2) Wireshark Analysis: We analyzed the number of NOPs
observed with Wireshark and found that it varied de-
pending on the number of TCP options present. As
a consequence of this finding, we have included the
number of NOPs as a child of the TCP combination
(tcp comb).

3) Correlation test and structure validation: We per-
formed a correlation test and chi-square independent test
and compare the structure with PC algorithm-generated
structure to validate the BBN structure; details are
provided in the evaluation section V. Fig. 1 illustrates
the Bayesian network generated with these criteria, and
(Fig. 2 shows its corresponding probability distribution.
We use pgmpy library [22] to generate the CPT of the
constructed Bayesian network using Bayesian Estimator.
The Bayesian estimator does not solely depend on input
data to learn the network parameters; it also utilizes prior
knowledge, which is expressed through a prior distri-
bution. This gives the estimator a reasonable starting
point rather than an absolute guide in order to make
up for any lack of data [23]. There are several prior
distribuitions available in pgmpy library, we select the
Bayesian Dirichlet equivalent uniform prior (BDeu) due

to its key properties of having a uniform prior over the
parameters of each local distribution in the network. This
makes structure learning computationally efficient and
prior knowledge from experts.

D. Inference: VE algorithm

We use a variable elimination algorithm inference using the
proposed BBN. The variable elimination algorithm acts on a
set of factors. The conditional probability distributions of the
network comprise the first set of variables (usually tables).
Elimination is triggered by a variable-by-variable ordering
called the elimination order. Two factor operations are repeated
several times in the algorithm—variables are multiplied and a
variable is summed out of a factor. The detailed algorithm for
variable elimination is given in [24].

IV. MODEL INTERPRETATION

We begin by defining some notation and discussing the
following for DSS i) BBN model interpretation, ii) formal-
izing adversaries belief in the following sections. A Bayesian
network (Fig. 1) consists of nodes, edges, and CPT table (con-
taining corresponding node states and conditional probabilities
represented in Fig. 2, each of which is discussed in brief below.

• Nodes: The nodes are classified into two categories:
– Root Node: The root node is the OS, as depicted in

(figure 1). The set of OSs which are represented by
{OSϕ}zϕ=a, where ϕ denotes the type or state of OS
such as windows 10, linux etc.

– Feature Nodes: All nodes except the root node in
figure 1 are feature nodes, denoted by F , where F =
{f1, f2, . . . , fn}. Each of these features consists of
a number of attributes; fi = {vpi

j }i
where i represents ith feature; j and p represent the
state and parent of the feature, fi, respectively. As
an example, let us assume that f1 is ttl; the parent, p,
of f1 is the OS; and j has two states in our dataset,
65, 128 Then, ttl = {65, 128}. We can represent the
feature states of f1 as f1 = {vos1 , vos2 }. Usually ttl
has three default values 65, 128 and 255. However,
the OSes we use here does not contain ttl value 255.

• CPT table: The CPT table contains the probability distri-
butions of various OSs and the conditional probabilities
corresponding to each feature state of the given parent
node. Fig 2 depicts the probability distribution tables.
Each table is indexed by an index Ti.

A. Bayesian Network Interpretation

We start by analyzing the Conditional Probability Distribu-
tion (CPD) tables Figure 2, which reveal several interesting
findings about feature states corresponding to each Operating
System (OS). We observe that for Windows 10, Windows
8.1, and Windows Vista, the probability of observing -s-m+w-
t (in the feature tcp comb) is high above 0.85, indicating
that for these Windows versions, the chance is significant to
observe only window scaling factor and low for mss, wscf,
and timestamp. However, the probability is high for observing
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Fig. 2. CPT table of Bayesian network.

-s-m+w+t when OS is Ubuntu or Mac with a probability of
0.78 and 0.73, respectively (Fig. 2, table T4).

We examine the relationship between the number of nops
and tcp options observed (tcp comb) and found a proportional
relationship. When the minimum number of TCP options such
as sack, mss, and timestamp are not observed, the number of
NOPs = 0 occurrence is high (figure 2, Table T5). Furthermore,
when the OS is Windows, the occurrence of -s-m+w-t is high,
we observe NOP = 0 with a probability of 0.96 given -s-m+w-
t. In contrast, the likelihood of -s-m+w+t is significant when
Ubuntu or Mac is the operating system, and when -s-m+w+t
is observed, the likelihood of the number of NOPs = 2 with
a probability of 0.97. The active trial of OS −→ tcp comb

−→ num nop in the CPT table demonstrates this distinction
between Windows and other operating systems.

Additionally, we notice that the state of op wscale 30301 is
especially prominent when the OS is MAC (Table T2, Figure
2). The likelihood of wsc 30301 is 0.995 when the OS is
MAC, but it is much lower when the OS is anything else.
By analyzing the data in table T3, we can observe the effect
of OS and window scale identifier (op wscale) on window
scaling factor (wscf). For example, when OS is Windows 10
and the op wscale is 30308, the likelihood of wscf 256 is 0.97;
for OS mac and op wscale 30301, the maximum probability
is 0.81 for wscf 2; and for OS ubuntu and op scale 30307, the
maximum probability is 0.91 for wscf = 128 (Fig 2), table T3).
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Thus, we can conclude that it is possible to identify different
OS using BBN.

Next, we observe the individual effect of mss val (mss) and
data fragment bit (flags.df) given OS. From the CPT table, we
observe the occurrence of mss 1460, and the data fragment
bit is 0 is low for all of the OS (Fig. 1, table T7 and T6).
However, we can observe header length 20 is only observed
when mss is 0, and the data fragment bit is either 0 or 1, (fig
1, table T8). When mss is not seen, it is considered mss uses
default value 536; we can directly observe the effect of header
length on mss value.

Similarly, we identify the feature states that remain identical
corresponding to different OSs. New OS, IoT devices, and
smart home devices can be included in the model—exploring
OS feature states is an efficient method of estimating the
ease of prediction of certain OSs. For example, if the attacker
already knows the distinctive feature of an OS, they can easily
target the specific OS. The defender can also utilize the CPT
table to analyze traffic based on the knowledge base.

B. Attacker’s Belief

BBN can reveal the perspectives of adversaries by estimat-
ing the posterior probability of any set of variables given some
evidence. This is useful for both predictive and diagnostic
reasoning in network systems that may have various operating
systems.

1) Predictive reasoning or causal inference: Causal in-
ference is used for the prediction of effects. For example,
estimating the probability of each OS class corresponding
to a certain set of feature observations involves a predic-
tion of effects. For example, When an attacker observes the
op wscale state 30302 and wscf 4.0, the BBN computes
Pr(OS.state | wsc.state = 30302, hdr len.state = 4.0).
Propagating this evidence, the network computes the following
OS probabilities—Windows 10 with a probability of 0.000001,
Mac with a probability of 0.0000004, Windows 8 with a prob-
ability of 0.0000001, and Windows Vista with a probability
of 0.99. The predictions indicate that the attacker is likely to
form the belief that the observation corresponds to Windows
Vista. Similarly, if an adversary observes a tcp combination’s
(tcp comb) state is -s-m+w+t and num nop value is 2, the
network computes the following OS probabilities: Ubuntu
(0.52), Mac (0.48), and any other OS (0) indicating that this
observation is not for Windows.

Similarly, any causal inference can be deduced using BBN.
2) Diagnostic reasoning: We can use Bayesian Belief Net-

works (BBN) for diagnostic reasoning questions to determine
the chains of behaviors that have the most significant impact,
e.g., the estimation of the probabilities of unobserved variables
when the Operating System (OS) is restricted. For example,
if the defender or attacker intends to infer whether a given
OS is Mac based on observations such as op scale, window
size, and wscf, by computing Pr(op scale, wscf, winsize |
OS.state = mac) using a BBN inference algorithm, it is
possible to identify the configurations of these three variables
with the highest probabilities for observing Mac. The BBN’s

output for observing Mac is with a probability of 0.75 if the
window scaling option (op scale) = 30301.0, window scaling
factor (wscf) = 2, and window size (winsize) in the range
(26214.0, 39321.0]. Similarly, the network recommends the
probability of Windows 10 occurrence is 0.977 with op scale
state = 30308, wscf = 256, and winsize in the range (-1.0,
13107.0]. This illustrates the advantage of utilizing BBN’s in
order to identify the most likely explanation or inference.

3) Inter-causal reasoning: Inter-causal reasoning in Bayes
net is a method of analyzing the relationships between differ-
ent events and factors. It is possible to establish relationships
between different events and factors, allowing for more accu-
rate predictions of future outcomes. For example, the adversary
observes ttl = 65, wscf = 128, op wscale = 30307.0. Our
model infers a probability of 0.9728 for observing ubuntu with
the above parameter observation.

New OSs are frequently introduced by vendors some of
which are very easy to detect, For example, when a Mac
exists in a network, the probability of identifying Mac with
certain features can be calculated with high probability using
the BBN. Similarly, attackers can determine the configurations
of all observed feature states that maximize the evidence
probability. For example, argmaxf1,f2..fn Pr(f1, f2, ....fn |
OS = mac) the most likely configuration in the observed
feature set corresponding to mac. Moreover, if a defender
intends to implement deception in the system, they can use
a belief formation model to implement feature deception.

V. EVALUATION

To validate the model, we take the following steps:

1) f1 score, correlation test, chi-square test: To assess
our BBN structure first we compare our BBN structure
against the PC algorithm for structure learning and
obtain an F1 score of 0.78, additionally, we perform a
correlation test for all pairs of variables in the dataset. If
the p-value of the test is less than the significance level
(0.05), we assume that there is a correlation between
the two variables and examine whether they are d-
connected in the network structure. Furthermore, we
conduct chi-square conditional independence tests to
check if variable X is independent from another variable
Y given a set of variables Zs from the data. Where X,
Y and Z represent random variable of the data.

2) Probability matching with local network: We set up
our local network with operating systems Windows 10,
Windows 8.1, Mac, Ubuntu and Windows Vista and
construct Bayesnet and CPT tables. Our analysis reveals
that all probability values from our model match closely
with those in the CPT table of the local network’s OS.

3) Predictive accuracy: Predictive accuracy is a common
metric used to evaluate Bayesian networks [25]. We
evaluate the classification accuracy of the Bayesnet and
compare it with artificial neural network (ann) and
random forest.
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A. Comparison with Random Forest

We compare the performance of the Bayesian Belief Net-
work (BBN) model with the Random Forest algorithm. We
create five disjoint subsamples of the raw data and perform
five separate evaluations, each involving one subsample as the
testing data and the remaining four samples as the training
data. We then average the five results. We modify the value
of winsize in the test set and convert it to one of the ranges
in the train set according to where it fell. Results from the
BBN model show that F1 scores, precision, and recall were
1 for Ubuntu, Mac, and Windows Vista; however, F1 scores
were 0.69 and 0.24, respectively, for Windows 10 and 8.1 due
to insufficient features related to the Operating System (OS)
version rather than OS type. However, adding more features
associated with HTTP User-Agent could help resolve this
problem. [11]. The prediction results with Random Forest did
not improve upon those of the proposed model and generated
the same classification report as BBN. The main goal of this
decision support system (DSS) is not a prediction but rather to
analyze feature states and demonstrate belief updates utilizing
the BBN model to identify a target. Figure 3 demonstrates the
classification performance of Bayes net and Random forest.

Fig. 3. Evaluation of Bayesian network and random forest classification

B. Comparison with ANN

Artificial neural networks (ANNs) have been widely applied
in OS fingerprinting [9] exhibiting good performance in terms
of OS prediction. However, using ANNs to interpret or analyze
data is difficult.

The lack of symbolic reasoning and semantic representation
in ANNs is a drawback. ANNs are generally black box models
in the sense that non-linear relationships of cause and effect
are not easily interpretable, making it difficult to explain
the results [26]. In contrast, we can utilize Bayesnet for
both prediction and interpretation. An artificial neural network
(ANN) with a 9–12–5 artificial neural network (ANN) was
constructed, consisting of nine input nodes, a hidden layer
of twelve neurons, and a final output layer with five neurons
providing the predicted OS class. Standard Scaler was used
for preprocessing, and a sparse cross-entropy loss function and
stochastic gradient descent (SGD) optimizer were employed to
update the parameters for each training example xi and label

Fig. 4. Accuracy of BBN vs ANN.

yi. The model was trained in seven minutes, and the argmax of
the predicted class was then taken. The same input variables
used in the Bayesian network (BN) were used in the first layer
of the ANN.

We use a different number of data records to compare
Bayesnet and the ANN. For the test set, we modify the value of
winsize in the test set and converted it to one of the ranges in
the train set according to where it fell.The results with different
data records for different data points, 168000, 100800, 72015,
38000, and 9000 are presented and we compare the accuracy
(Fig. 4). Comparison of the proposed BayesNet to ANN
reveals that the former exhibits higher accuracy based on lesser
data and is also computationally less expensive (Fig. 4).

VI. RELATED WORK

Yu Liu and Hong Man proposed a Bayesian network model
for generating attack graphs to describe exploitation of vul-
nerabilities; they utilized C++, which automatically generates
an attack graph with edges and weights [27]. Bayes net
is used for probability calculation from attack paths to the
vulnerable node. However, reaching the vulnerable node can
not guarantee to find the vulnerability. Our model intends
to show how Bayes net can be used for inference once a
node is compromised. Our model aims to demonstrate using
Bayesian network for inference after a node is compromised.
The Bayesian network is generated from real-world data and
contains several variables, and is used for parameter learning
to depict adversaries’ belief formation. The studies [4]–[6]; fo-
cused on the attack graph and the path to reach the vulnerable
node. In [28], the authors developed a model on how advanced
attackers establish and maintain their footprint within a target
system with the assumption that the attackers have prior
knowledge of the target network before compromising nodes
within that network. The study assumes that the adversary has
complete knowledge of the network. All the studies above
did not focus on the inference technique from the collected
data from network nodes. In contrast, the approach proposed
in this study first learns from the data and determines the
characteristics of the features corresponding to each OS. This
node-based enables the defender to adopt different security
policies for different nodes based on feature analysis.
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VII. CONCLUSION

We develop a BBN model to infer from the passively
collected data and reasoning attackers’ belief formation. We
evaluate our BBN model with a p-value significance level,
matching probability with a network setup, and predictive
accuracy. Building BBN models capture what targets are easily
identifiable by adversaries. It depicts the influential factor
that identifies the target. Additionally, the paper describes
how the BBN can be incorporated into a DSS to support
causal and diagnostic reasoning analyses of target information.
The defender can utilize the BBN for various nodes in the
network, where workstations, databases, and servers exist, and
determine the relationship of the variables that lead to target
identification. In future research, we will add IoT devices to
the model and analyze their behavior. In addition, we will
investigate the use of Bayesian belief networks (BBN) to
identify optimal variables for feature deception and assess the
efficiency of such deception by masking those variables in
order to identify a target. Furthermore, we plan to utilize BBN
models to evaluate the feasibility and technical complexity as-
sociated with modifying feature states as part of implementing
deceptive measures.
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