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ABSTRACT

After a major natural disaster strikes a region, emergency response
often lacks information about the post-disaster state of the road
network. Conflicting information about the region from multiple
sources creates confusion. Thus, it is imperative to obtain an up-
dated map, which provides accurate information about currently
navigable paths and identifies hazardous locations. However, due
to possible damage to communication and computation infrastruc-
ture, existing centralized geospatial services may provide outdated
information. One possible solution to this problem is using Internet-
of-Things based devices that are deployable without relying on a
centralized service, which will be able to both acquire and dissem-
inate local data. In this paper, we introduce PhobosBC, a decen-
tralized system which is able to provide a reliable mapping service
using volunteer work, while relying on a blockchain backend. This
solution utilizes the availability of modern smartphones with GPS
receivers and processing capabilities to collect sequences of GPS
locations and combine them into trajectories. These trajectory data
are submitted as entries into a blockchain after processing them
through a smart contract. PhobosBC relies on the inherent robust-
ness and distributed nature of blockchains to make collating and
assembling a map from these paths more accurate and less suscep-
tible to disruption. Compared to a centralized system, PhobosBC
is more resilient and is able to respond to individual agents going
offline while still retaining consensus. As a performance incen-
tive, we rank volunteers by the amount of correct data submitted
and publicly recognize top performers. We develop an agent-based
model to simulate PhobosBC under a hypothetical disaster sce-
nario, and we compare our approach with a crowdsourcing system
which deploys a simulated central control mechanism. We share
the problems faced during creation of the agent-based model and
the lessons we learned. Our results show that PhobosBC is able to
recreate the ground truth faster while being more fault tolerant.
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1 INTRODUCTION

As human population increases, the number of communities af-
fected by major natural disasters rises. Despite advances in pre-
dictive models for adverse weather, much effort has to be devoted
to both mitigation and reactive systems by emergency manage-
ment agencies [1]. After a disaster strikes, preliminary information
emerging from the affected area can be inaccurate and often has
inconsistent data, which need to be processed urgently to make
it usable. As a disaster affected area has undergone significant
changes, the most immediate need is to quickly create a first-order
approximation of the ground details [2]. Emergency response and
government officials need this critical information so that they can
divert aid to regions that are in most need of support. A disaster-
affected region is not always conducive to thorough surveys by
external observers to create such a report [3]. Thus, the best and
most logical source of information is the affected people themselves
and any civilians already in the area.

In order to obtain data from civilians, we rely on crowdsourcing
[4]. Generally, most people have access to smartphones, which have
a multitude of useful sensors such as GPS receivers, accelerometers,
gyroscopes, ambient light sensors, and magnetometers. Collecting
sensory data can give crucial information about the state of the
immediate location. Most modern IoT devices rely on similar sen-
sor hardware but are implemented on a global network of smart
devices. They generate massive amounts of data, which are utilized
by various crowdsourcing platforms [5]. Erroneous data, caused by
malfunctioning sensors or untrustworthy actors, will contribute to
lowering the accuracy of the information. As the size of the data
increases, maintaining integrity will become a challenge.

The question arises about what incentives people should receive
to volunteer their time and resources to such a project. We find
that there are many real-world examples of people being altruistic
and travelling from great distances to offer aid [6]. An example of
a volunteer-based, successful post-disaster crowdsourcing system
is CrowdSource Rescue, a Houston-based non-profit which offered
GPS-based tracking and mapping services to connect civilian rescue
workers with people in urgent need during Hurricane Harvey [7].
The system performed rapid relief and recovery operations and
helped lessen the load on governmental emergency services. Still,
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a problem emerges with the collating of multiple types of data and
keeping them organized and referenced.

In this paper, we propose PhobosBC, a system that can quickly
and efficiently create navigable maps of an area utilizing contribu-
tions from volunteers. PhobosBC helps rescue teams map a com-
plex terrain with shifting conditions, with active knowledge about
available paths. It employs a novel blockchain based architecture
that works with greater efficiency than existing, traditional edge-
computing based systems. It features decentralization as a core
component. It has greater robustness, fault tolerance, and resilience
with respect to traditional crowdsourcing difficulties in comparison
with a traditional centralized, single point-of-failure systems. As
an incentive mechanism, we rank the quality of contributions of
individual volunteers and publicly acknowledge top performers.

We evaluate PhobosBC’s performance using an agent-based sim-
ulation system. The existence of detailed post-disaster maps, such
as U-Flood [8] enables us to realistically perform such a simulation.
We use these maps as ground truth for our simulation. We present
experimental results which demonstrate that PhobosBC produces
maps more quickly and reliably compared to a central-authority
based system.

The rest of this paper is structured as follows. Section 2 intro-
duces the crucial requirements and assumptions that we must take
into consideration when developing our solution. Section 3 pro-
vides an overview of existing mobile crowdsourcing schemes, both
blockchain and non-blockchain based. We then describe the system
architecture and detailed protocol of PhobosBC in Section 4. In
Section 5, we use an agent-based model to simulate PhobosBC
under a hypothetical disaster scenario; moreover, we also compare
our approach with a crowd-sourcing system that relies on a central
control mechanism. We also talk about the challenges we faced dur-
ing model construction and deployment. We conclude and discuss
avenues for further research in Section 6.

2 CROWDSENSING REQUIREMENTS

A post-disaster response system will naturally need to deal with
some common situations. Regular people, registered as data col-
lectors within PhobosBC, will be the primary agents of the data
collection process. To complete the task, they will need to physically
travel to all accessible locations, automatically collect or manually
enter the data and add it to the blockchain. As such, PhobosBC is
designed to work under the conditions which will be described in
the remainder of this section.

2.1 Assumptions

Disruption to communication networks. Any major natural dis-
aster will damage a significant portion of telecommunication in-
frastructure [9] within the affected area and thus render existing
communication methods unreliable [10]. Additionally, there can
be severe impacts to underground cabling, overground towers and
street poles [11]. We assume that some of the existing network
towers are no longer capable of accurately and precisely delivering
messages.

Disruptions to infrastructure. As there will almost certainly be
widespread power outages [10], it is possible that street lights, de-
icers, or traffic lights will go down for an indeterminate period of

time. This is why automated collection of ground information that
digital apps rely on are disrupted in the immediate aftermath of
the disaster, just when people are most vulnerable. There might be
catastrophic damage to many buildings in the area, with especially
stronger impacts to those in the direct path of the disaster. Lack
of power will create a scarcity of drinking water, which may take
months to restore. Damaged natural gas pipelines can make entire
areas become uninhabitable for weeks.

Availability of communication devices. We can safely assume
that every volunteer in the field will have access to some sort of
computation device that is capable of wireless communication such
as, but not limited to, a cell phone. The device would be capable of
having short-range, ad-hoc wireless communication with similar
nearby devices without relying on an internet connection.

Availability of volunteers. We must assume that there will be
large groups of volunteers, both from within and outside the af-
fected area, who will rush to provide aid. These are mostly non-
governmental, loosely organized peoples who will be coming to
offer whatever help they can. Studies show that “voluntary mutual
help motivated by altruism” [6] is a strong force. Any system that
seeks to provide aid should leverage these people.

2.2 Objectives

If the previously stated assumptions hold, then a system designed to
work during a natural disaster must realize the following objectives.

Robustness. Reliability is the most important characteristic of
the system. What result the system generates, whether it be a navi-
gation map, population density estimates, etc., must be completely
trustworthy [12]. Additionally, incorrect results must not invalidate
the final output and the system must be able to maintain limited
functionality in case of major systemic failures. It must account for
the fact that real-world data collection is messy and error-prone.
It should be able to appropriately handle missing data and dismiss
any corrupted data. In case of communication losses, the system
must be designed to fail safely.

Support for collaborative problem solving. Society after a natural
disaster is chaotic. Any system designed to work under such an en-
vironment needs to be able to take advantage of volunteers pooling
their resources. Distributed problem solving using both human and
technical resources is essential to collect up-to-date information
and provide them to emergency response so that they can take the
most appropriate action [13]. This might lead to scalability prob-
lems, so the system must be also able to scale up quickly to deal an
evolving situation involving a large number of volunteers [14].

Decentralization. In order to achieve the first two objectives,
the system must be decentralized. We assume that any established
authority might not be available once the disaster is under way
[15]. We are not guaranteed to have access to one that has existed
since before the disaster. Requiring a central authority to be set up
during the disaster is also not viable [16]. So, the system must work
without external verification. This will also have the advantage of
any avoiding complications arising from an adverse third party.
The system must be able to deal with attackers both benign and
malicious.
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Table 1: Comparison of Existing Solutions with our Require-
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Assumptions Disruption to Communication Networks ✓ ✓ ✓ ✓

Obstructions to Area Infrastructure ✓ ✓ ✓ ✓

Availability of Communication Devices ✓ ✓ ✓ ✓ ✓

Objectives Robustness ✓ ✓ ✓ ✓

Collaborative Problem Solving ✓ ✓ ✓ ✓ ✓ ✓ ✓

Decentralization ✓ ✓ ✓ ✓ ✓

Energy efficiency ✓ ✓ ✓

Transparency ✓ ✓

Energy efficiency. The method must be energy and computation-
ally efficient, and have a hard limit on its allowed energy consump-
tion. Any disaster scenario will necessarily be a place of energy
shortages, and the system must work on top of existing challenges
and not consumemore than the value it provides.Wireless transmis-
sions methods’ inherently energy inefficiency must be minimised
by not relying on broadband broadcasts and instead relying on
point to point communication methods. Low energy consuming
technologies, such as Bluetooth communication or Near field com-
munication must be preferentially used. If peer-to-peer communi-
cation is used, the absolute minimum number of messages required
to complete the result must be transmitted [17]. The system must
be optimized to work on low-power modes and use energy efficient
algorithms for its calculations. The system must recognize when it
is exceeding its operational energy computation limit and stop.

Transparency. All the information collected must be made avail-
able, upon request from higher authorities, for scrutiny and audit
after the disaster situation has stabilized enough for those higher
authorities to establish themselves. It is necessary that the decision
making process is fully recorded so that it is possible to later recon-
struct exactly how and what information the decision was derived
from.

3 EXISTING SOLUTIONS

We conducted a review of the related literature and evaluated which
approaches effectively meet our assumptions and objectives. The
results can be found in Table 1. We see that non-blockchain based
solutions, which use Internet-of-Things based approaches in an
Edge computing-like network, tend to fulfil our initial assumptions,
but fail with many of our critical requirements. Complete decen-
tralization, which is very important in a confused post-disaster
scenario, is not assumed for neither of Kucuk et al. [4] or Bhat-
tacharjee et al. [21]. Both require multiple local authorities and at
least one central authority.

Blockchain based solutions like the one proposed by Yuan et
al. [18], Ming et al. [19] and Yang et al. [20] however, assume that
their operating environment is very much a modern technological

city, with all its attendant infrastructure. They would all fail if we
assume the networks and power have become unavailable. They
are, on the other hand, designed to not rely on any central authority
of any kind and have transparency built-in. Zebralancer [18] relies
on randomness for its cryptographic technique but it ensures that
the results are unchangeable once encrypted. It can thus guarantee
determinism within the protocol. Yang et al., however randomly
assigns workers to tasks for anonymity and thus it cannot guarantee
the same.

One major issue is that crowdsensing methods are less strict on
energy efficiency. They mostly use very computationally expen-
sive techniques for their ledger and encryption methods, which
is understandable given their usual operating environment. Their
communication methods broadcast usually over wifi or piggyback
over existing cellular connections, both of which are not very power
efficient. Making effective use of point to point communication and
using low energy techniques like Bluetooth 5 is not widespread.

Sarbajna et al. [22] have proposed DeimosBC, which is a crowd-
sourcing system that can build a map from volunteer submitted
GPS points and utilize the decentralized nature of blockchains to
improve upon standard practices. It relies on its smart contract to
generate paths from noisy GPS points and combine them into a
navigable map.

Zebralancer [18] is a private and anonymous decentralized crowd-
sourcing system which tries to solve two challenges of decentraliz-
ing crowdsourcing: data leakage and identity breach. They designed
a methodology called outsource-then-prove which attempts to re-
solve the conflict between the blockchain transparency and the data
confidentiality. Their approach satisfies the basic utilities/fairness
requirements of data crowdsourcing, which ensures that any re-
quester will not pay more than what they deserve and that each
worker gets a payment if they submit data to the blockchain.

CrowdBC [19] is a blockchain-based decentralized framework
for crowdsourcing, in which a requester’s task is solved by a crowd
of workers without relying on any third-party trusted authority. It
guarantees users’ privacy while ensuring low transaction costs. The
system prototype was deployed on a Ethereum public test network
and tested using the CIFAR-10 dataset.

Mobile Applications for Emergency Response and Support (MAp-
pERS) [1] is an Android application that enables on-site storage
capacity of real-time data and a platform to support rescue opera-
tions during a crisis. Citizens are able to provide the location and
status of the people currently affected by the flood and then upload
photos or provide local water-level assessments. This information
is critical for emergency responders to organize and prioritize inter-
ventions. MAppERS provides different modules for volunteers and
for citizens who are the first actors on scene in any surveillance
strategy. The system is used to train the exposed population in
flood awareness and help understand the proper terminology to
explain what is happening. It aims to promote awareness within the
local population of distributed, crowdsources surveys. The app is
also designed to be used in time of crisis to provide communication
between the civilians and first responders.

Bhattacharjee et al. [21] propose a complete Post-Disaster Map
Builder, which uses a crowdsensed digital pedestrian map con-
struction system using a smartphone based DTN. They propose
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collecting trajectory traces through volunteers, which are then pe-
riodically shared among the other volunteers within the disaster
affected area through a custom network solution. They gradually
construct pedestrian maps of the affected areas by combining these
traces over time. The results show that their system is capable of
constructing digital pedestrian maps of a disaster affected areas
with high accuracy at the cost of marginal delays.

Tan et al. [23] propose a blockchain based trusted payment ser-
vice mechanism for a crowdsensing system, which they claim is
completely decentralized. Yang et al. [20] propose a novel solution,
dubbed a blockchain privacy-preservation crowdsensing system, to
address these privacy problems in traditional crowdsensing systems.
Kucuk et al. [4] have designed a post-disaster framework using the
IoT communication technologies for disaster management based
on a crowdsensing clustering algorithm.

For post-disaster agent-based modelling specifically, we looked
at some practical examples. Koch et al. [24] used data to construct
a microsimulation model of ambulance response in New Windsor,
NY. As Emergency Medical Services (EMS) rely on road networks
to respond to patients quickly, they developed a model to help EMS
improve disaster preparedness. The model showed that removing
any of three sets of links (the set of four bridges in New Wind-
sor, geographically central roads, and the most frequently traveled
roads) increased response time, but removing the most frequently
traveled links had the greatest effect. We looked at the survey of
disaster response models by Bae et al. [25], where they discuss how
an agent-based model can be used to evaluate the efficiency of dis-
aster responses to MCIs. Their proposed model includes geospatial
details and medical information and the case study in the paper
shows how the model can be used to analyze a disaster response
system. The proposed method can provide insights into disaster
response systems and can be used to improve them.

4 PHOBOSBC: OUR PROPOSED PROTOCOL

Based on our assumptions, we build a crowdsourcing system to
create a post disaster map. We detail the architecture and workflow
of our system next.

4.1 System Architecture

We propose PhobosBC, a system where certified volunteers com-
bine their knowledge to automatically generate a working digital
map of accessible areas within the disaster affected region. The
objective of PhobosBC is to ultimately generate a complete and
correct map of accessible paths through a disaster affected region
through data collected by volunteers equipped with an IoT enabled
device. In our work, a map is defined as an undirected graph with
vertices representing locations which are described by longitude-
latitude pairs and edges being traversable paths between those
locations. The blockchain itself would at any time contain the cur-
rent partially-complete graph. Data collectors submits a trajectory
and data processors run a smart contract to check whether the sub-
mitted route is valid and adds it to the chain if so. Trajectories are
sequences of GPS locations collected by a volunteer. Each consec-
utive trajectory point is separated by a threshold distance. The
threshold distance is the minimum distance between collection
points, required for segmenting the paths. Lower values create

more fine grained maps. A combination of all these partial maps
create a network of interconnected paths that will allow people to
navigate a difficult terrain in the real world. The final, complete
map may be subtly different from the pre-disaster map as it will not
contain those paths that have been blocked due to some disaster.

At any point of time, the blockchain can contain multiple dis-
connected subgraphs, which represent partial maps. These maps
are represented as graphs with each vertex containing: (i) which
vertices it is connected with, (ii) real-world location, and (iii) addi-
tional sensor data. These are created by individual Data Collectors
submitting their data. Once all the processors are satisfied that no
more updates can be done, we freeze the blockchain [26] and make
the map available for general public use. This process can repeat as
many times as needed, generating up-to-date maps while there are
still volunteers. The system is halted when the Data Processors de-
tect that the system has too many erroneous data being submitted
and can compromise the integrity of the map.

In order to provide a lightly gamified incentive mechanism, we
make available the number of data points submitted by each vol-
unteer, and their accuracy as determined by the rate of erroneous
trajectories. We periodically publish an updated ranked list of the
top volunteers.

Next, we define the parties involved in PhobosBC and their
structure.

4.1.1 Data Collector. Any volunteer coming into the system can
perform as Data Collectors. They do not need any verification
from an outside authority, such as the local Government, but they
must be registered into the blockchain system heading out for
work. As they are registered, they are each randomly assigned a
unique identity. They will then start roaming the region and collect
data points which will later be collated into traces. Collection of
consecutive trajectory point is separated by a threshold distance,
which is managed by the Trace management system as described
in Section 4.3.2. After collection, that trace is then broadcast to all
local nodes that are within range. Until it receives confirmation of
delivery and successful processing from at least one Processor, all
subsequent traces are held in a queue. The Data Collector keeps
working until they voluntarily stop or receive a notification from
the Trace Management of errors in the data collected. If the number
of errors exceeds a preset limit, the user must be re-authenticated
into the system.

4.1.2 Data Processor. Data Processor are assumed to have greater
data processing capabilities and thus several responsibilities:

(1) Package Verification: Accepts only data-packets from the
Collectors that have been correctly formatted. Performs error
checking.

(2) Author Identification: Performs verification of incoming data
packets and acknowledges receipt.

(3) Trace Processing: Operates the Trace Management System
(described in Section 4.3.2), and passes it on for further pro-
cessing to the Data Summarization System (described in
Section 4.3.1). Runs the smart contract.

(4) Result Provision: Provides generated map to any requester.
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Figure 1: Flow of control in PhobosBC.

4.2 System Security

We assume that PhobosBC is not a target for malicious actors. We
provide no service that can be compromised to adverse ends or
monetary gain. People are inherently altruistic and come together
during as a community to support each other during natural dis-
asters [6]. The inherent protections from the distributed ledger
suffice for our purposes. However, a major secondary issue is the
integrity and correctness of the data itself. Volunteers may submit
incorrect data due to multiple reasons other than self-interest, and
PhobosBC is designed to mitigate this. Even assuming that most
of the submitted data is correct, we need to deal with outliers. Our
smart contract performs a point verification process to deal with
this.

4.3 Protocol

PhobosBC is an extension of the Bhattacharjee et al.’s centralized
post-disaster map-builder system [21]. Construction of a compre-
hensive digital pedestrian map of an entire region first requires
building local pedestrian maps of the disaster affected areas and
then inferring the global pedestrian map by collating the local maps.
The components of PhobosBC are described in the subsections
below.

4.3.1 Data Summarization System. Each Data Processor is respon-
sible for collating the data that it receives in the form of traces

from Data Collectors. This module is then used to construct the
disaster map from those traces. It checks for overlaps and excessive
gaps between points. Traces are then checked for consistency and
erroneous traces are discarded. It then combines the remaining
traces into a single map. For the purposes of security, it also keeps a
tally of the number of the traces submitted per data collector. This
process is designed to be lightweight and efficient.

4.3.2 Trace Management System. Each Data Collector periodically
collects their own GPS location. These collected data create se-
quences of trajectory points, which are combined into traces based
on temporal and physical distance between them. To avoid over-
sampling, we sparsely sample the data. This process is susceptible
to random noise because the Data Collectors do not always move
at a uniform speed. During the course of their journey they tend to
stop occasionally. We pre-define a minimum displacement between
each collected trajectory point, depending upon the nature of the
region. This has two separate purposes: (i) Reduces the possibly of
random errors introduced into the collection due to arbitrary halts
(ii) As GPS receivers have very high energy consumption, reduced
and periodic polling saves power.

We also use the concept of trajectory segmentation [27]. Some-
times displacement between two consecutive trajectory points be-
comes much greater than the minimum displacement due to the
missing/bad GPS sensor data. This sporadic gap, which might affect
the direction of the trace between the consecutive trajectory points
produces erroneous trajectory traces. In order to avoid such gaps in
trajectory traces, we segment trajectory up to that gap and generate
smaller trajectory traces. We use a threshold distance, that is larger
than the minimum displacement, between consecutive trajectory
points for trajectory segmentation [28].

4.3.3 Blockchain Manager. The Blockchain Manager is responsible
for handling the running of the blockchain protocol, and is present
within the Data Processors. All Data Collectors who will be going
out into the field must be pre-verified, without compromising their
identity or their exact location. Drawing upon the central tenet of
a blockchain protocol, we do not have any central authority who
decides consensus or resource allocation. It is the responsibility
of the Data Processor to run the smart contract and submit the
current partial map to merge with all other geographically distinct
complete maps. The smart contract is also responsible for running
a route tester to ensure every single location is visitable.

4.4 Workflow

In this section, we present our blockchain-based extension to the
Bhattacharjee et al.’s map builder system. The flow of control of
the proposed system has been depicted in Fig. 1 which calls the
following operations:

• Registration: All collectors and processors will need to regis-
ter with the blockchain system at initialization. Each of these
registered collectors will be assigned a pair of cryptographic
keys, and their identities are noted. The data processor is
allotted a special token for identification purposed. All the
registration information is recorded as a transaction in the
blocks.
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• Task Assignment: This is an automated process performed
by the requester. Once registration is complete, all collectors
receive instructions about what data they are collecting and a
randomized starting point based on their geographic location.
This might include just GPS points, or have additional sensor
data. They are then free to start doing their tasks. The task
includes the starting trajectory point (which may be changed
as per their need), the direction of the trace, the current time
and the status.

• Smart Contract Creation: The data processor is responsible
for running the smart contract which checks quality of the
sensory data coming in from Data Collectors, in accordance
with the Data Summarization system Section 4.3.1.

• Uploading Sensory Data: Data Processors upload the received
sensory data to the blockchain.

• Loading Tasks: The processor downloads all the information
from the latest map and posts all the information on their
private blockchain network. The processor is responsible for
maintaining the consistency of the task information on the
blockchain (the complete global map and their own partially-
complete local map).

• Broadcast: If the current state of the generate map stored in
the blockchain is satisfactory, then the map is made available
for download from any requester by a server node. The tally
of data points submitted to the chain by each Data collector
is updated.

• Retirement: The data processor constantly checks the fail-
ure rates of all other nodes. To avoid degradation of output
quality, once the number of failure exceeds a threshold, the
blockchain is frozen. The final block is marked to ensure all
subsequent blocks get automatically discarded. This freeze
state is broadcast throughout the network from an autho-
rized Processor and is amplified by every node who received
it, whether Processor or Collector. Other Processors may run
their own integrity tests to ensure the decision is correct. A
majority vote is then undertaken to finalize the decision to
freeze or not.

5 PROTOTYPE IMPLEMENTATION AND

EVALUATION

In order to assess how PhobosBC would perform in a real-world
setting, we design an agent based model to simulate a specific
disaster scenario. For the purposes of the simulation, each volunteer
will be an agent in the system. We implement Data Processors and
Data Collectors as agents exploring a graph with the same layout as
the roads of a city. These agents have the capacity to communicate
with each other and run the smart contract. We build two different
simulation models, one for PhobosBC and one which assumes
centralized control.

The controllable parameters of the simulation are the number of
agents𝑚, the total number of time-steps per run 𝑡 , the failure rate 𝑓
(probability that an agent goes down for 3 consecutive time-steps)
and 𝜏 (the number of points collected by a data collector in a single
simulation step). A single simulation step represents the movement
of an agent from one node to the next.

We simulate the performance of PhobosBC to determine the
effectiveness and accuracy compared to an idealized centralized
system. The experiments were performed on a local machine run-
ning on Windows 10 with an Intel i9-9880H processor, 32 GB of
DDR4 RAM and an NVMe drive with 8.0 GT/s. The simulation was
performed using the Agent Based Modelling library MESA, written
in Python [29]. The smart contracts were written in Solidity [30]
and tested using Ganache running the Ethereum blockchain [31].

For ground truth, we utilized the Harvey Damage Assessment
GIS dataset from the City of Houston [32]. For our base layer
we used a city road network map from OpenStreetMaps, through
OSMnx [33]. Using flood damage reports we generate non-passable
roads in those road networks. The city model is a road network
graph imported from Open Street Maps, simulating a section of
Houston. The graph is stored as NetworkX objects [34], where roads
are edges and intersections are vertices. The vertices stores infor-
mation: a reference ID, location information (in latitude/longitude)
and height of maximum water inundation level. Our generated map
is then compared against this flooded city road network map using
the evaluation procedure described later in Section 5.3.

5.1 Error Model

The simulation model for PhobosBC requires Data Collectors to ac-
quire a group of synthetic GPS points. GPS data is inherently noisy,
and contain uncertainties in their calculated position, depending
on factors such as latitude, seasons and continental water loading.
For accurate simulation, that noise must be added to the synthetic
data. GPS noise models have been widely studied and are composed
of several types of noise: white noise, flicker noise, random-walk
noise. White noise dominates at all frequencies over the others, so
that is what we use.

We model the error by assuming that the raw GPS point is 𝐺0
with the additive noise in the form:

𝐺𝑡 = 𝐺0 + 𝑁𝑡 (1)

where 𝑁𝑡 is an independent stochastic process which is normally
distributed with zero mean and variance of 𝜎2. We obtain realistic
values of 𝜎2 from the Central Error values found in Table IV in Lee
et al. [35]. We pick the values for different consumer devices and
and assign them to a Data Collector. In order to better simulate the
random nature of crowdsensing, we also add a 10% chance of no
location being collected at all.

5.2 Point Verification Method

In order to de-noise and remove errors from the collected GPS data,
we leverage the capabilities of a crowdsourced system. We also
assume that we have access to a pre-disaster map𝑀 , and use the
information from that as control points to anchor our collected
data. Our aim is to generate a set of verified points.

For every single point collected by a Data Collector, we aim
to locate the closest point in the original pre-disaster map that is
within a distance threshold; if no such point exists the point will
be discarded. The threshold distance is the maximum tolerated
GPS noise. Moreover, only points that have been collected by at
least three different data collectors will be considered verified. See
Algorithm 1 for details.
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Algorithm 1 Point Verification Pseudocode
Input: Set of Data Collectors 𝐷
Input: Points 𝑃𝑑 collected by Data Collector 𝑑
Input: Pre-disaster Map𝑀

Input: Threshold distance 𝜃
Output: Bag of Verified points V
1: for all Data Collector 𝑑 ∈ D do

2: for all Points 𝑝 ∈ 𝑃𝑑 do

3: Compute closest point 𝑟 ∈ 𝑀 to 𝑝
4: if 𝑑 (𝑟, 𝑝) ≤ 𝜃 then

5: Add 𝑟 toV
6: end if

7: end for

8: end for

9: for all points 𝑟 ∈ V do

10: if 𝑟 has not been collected by three different Data Collectors
then

11: Remove 𝑟 fromV
12: end if

13: end for

5.3 Evaluation Metric

To evaluate the accuracy of the map generated by PhobosBC, we
will compare it against a post-disaster map from a known source.
However, paths constructed by PhobosBC and paths in the ground
truth maps may not necessarily agree in their edges. Consequently,
rather than comparing edges, we check whether each path in the
original map has a corresponding connected sequence of edges in
the reconstructed map. The percentage of paths in the ground truth
map which were found in the reconstructed map is used as the
evaluation metric.

5.4 Results

We initialize PhobosBC by distributing𝑚 agents, of which 85% are
Data Collectors and 15% are Data Processors, randomly over the
map. We run different experiments by varying𝑚 between 50 to
1000, and 𝑡 between 200 to 600. When the simulation starts, all the
Data Collectors start recording their current location and make a
connection to the closest Data Processor. They are permitted to
move to one adjacent edge during one time step. 𝜏 is fixed to 3 during
the experiments. All Collectors send the last 3 collected points to
the closest Data Processor. Transmitting this data takes one time
step, which can be done while the Collector is starting another
sequence. There is no queuing mechanism: all collected data are
transmitted at once. The Data Processor runs the smart contract
and submits the collected data to the chain, after performing point
verification as described in Algorithm 1. For most experiments, we
set the failure rate 𝑓 to 2%.

For comparison, we generate an idealized centralized model. In
this case, there is just one Data Processor, and that agent is available
to receive data from every Data Collector on the field. Similar
to the standard model, the central data processor also has a 2%
chance of going down. In order to simulate the irregular availability
of a central point, we give it a 25% chance of coming back after
every 3 time-steps. We evaluate this setup against our standard
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agents.

setup and compare how long it takes to to reconstruct 95% of the
ground truth map. The results can be seen in Fig. 2. We can see that
PhobosBC performs consistently better than the centralized model
over various agent numbers. We can also see that PhobosBC is also
capable of reaching high accuracy levels relatively quickly using
very few agents.

For our baseline comparison, we limit 𝑡 = 350 for both models
and then vary the number of agents 𝑚 between [50, 1000]. The
results of this experiment are shown in Fig. 3. It is clear that al-
though both models have poor accuracy with low agent numbers
initially, PhobosBC is quickly able to reconstruct a large portion
of the map. Using PhobosBC, roughly 500 agents are capable of
accurately recreating the ground truth in 350 time steps, making it
faster than the centralized approach by an average of 50 time steps.

The next experiment tests the robustness of the two systems
by varying the failure rate 𝑓 . Moreover, we analyze how many
volunteers are necessary to avoid mapping performance degra-
dation. We do this by varying the node failure rate 𝑓 between
2% and 50%, while keeping the length of the simulation fixed at
𝑡 = 350 timesteps and also vary the number of total nodes as follows:
𝑚 = 100, 250, 500, 1000. In our analysis, we assume that the map
reconstruction is unsuccessful if the reconstruction rate falls below
75%. The results of this experiment are depicted in Fig. 4. We ob-
serve that PhobosBC is able to maintain its performance far longer
than the centralized approach. We can see that the system is able to
tolerate up to 35% to 40% node failure. However, when approaching
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50% failure rate the system is unable to maintain a high reconstruc-
tion rate. The centralized model performs far worse, as the central
node going down irrevocably handicaps the entire system. Even
a 20% node failure rate decreases its map reconstruction rate to
below 60%. To test an extreme case, we run a single simulation with
𝑚 = 1000, 𝑡 = 1000, 𝑓 = 50 for both models. The reconstruction
rate for PhobosBC stabilizes at 59% while the centralized model
stabilizes at 20%. This is slightly higher than the performance at
𝑓 = 50 and 𝑡 = 350. This indicates that simply letting the system
run for long periods of time does not lead to a better map for high
failure rates.

5.5 Challenges Faced

We found, during deployment and evaluation of our model, that
agent-based modelling of city streets introduce very specific dif-
ficulties. The primary challenges we faced are verifiability and
reproducibility. It can be difficult to verify that an agent-based sim-
ulation is accurate, as it is often difficult to know the true behavior
of the real-world system that is being modeled. In order for the
simulation to have real-world applications it is important to be able
to reproduce the results. This can be difficult, as small changes in
the parameters of the simulation can lead to significant changes in
the results.

Our model also had to deal with heterogeneity, non-linearity
and uncertainty. The agents in a city street model should be very
heterogeneous, with different characteristics and behaviors, to be
more realistic. This made it difficult to develop a single model that
can accurately capture the behavior of all agents. The interactions
between Data Processor/Collector agents within our city street
model turned out to be non-linear, meaning that small changes
in the behavior of one agent had large effects on the behavior of
other agents. This made it difficult to predict the behavior of the
system. Additionally there is often a lot of uncertainty about the
parameters of a city street model, such as the speed of vehicles

and the walking speed of pedestrians. This uncertainty can make it
difficult to obtain accurate results from the simulation.

6 CONCLUSION

In this paper, we introduce PhobosBC, a novel post-disaster crowd-
sourcing system. Its system architecture relies on a blockchain to
provide robustness and decentralization, and the ability for multiple
disparate users to contribute their effort to a collaborative task. The
system is designed to handle major disruptions to communication
networks and obstructed infrastructure, requiring the end user
to only have access to a simple mobile phone. The system has
two types of internal users: Data Collectors and Data Processors,
who perform the basic tasks of collecting information form the
real world, processing it, and then adding it to the blockchain
for anyone to access. This blockchain contains, at all times, the
latest combined data product, and is made available to anyone who
asks for it. Internally, the system relies on two modules: the Trace
Management System, which processes the traces collected by the
Collectors and the Data Summarization System, which collates the
traces.

We use an agent-based modelling approach to simulate this sys-
tem and compare it against an idealized centralized system working
in the same space. Our experiments highlight the importance of
setting macro-level agent behaviour over micro-level rules in order
to more accurately create a baseline. The simulation results show a
better performance and fault-tolerance compared to the centralized
model. As far as future work is concerned, we are working on in-
troducing crowd-movement simulations [36] within PhobosBC to
more realistically model expected behaviour of our agents. We also
plan to introduce more advanced blockchain capabilities into the
system, such as complete confidentiality of users and resource man-
agement. We also aim to introduce an incentive mechanism within
the system to reward volunteers for delivering more accurate maps
more quickly.
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