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Abstract

Technological networks (e.g. telephone and sensor networks, Inter-
net) have provided modern society with increased efficiency, but have also
exposed us to the risks posed by their vulnerability to attacks. Mitigat-
ing these risks involves designing robust network topologies in situations
where resources are economically constrained. In this paper, we consider
the vulnerability of network topologies from an economic viewpoint and
propose security metrics, which are necessary for assessing the efficiency
of our solutions. We define the vulnerability of a network as the potential
loss in connectivity due to the actions of a strategic adversary. To derive
vulnerability metrics, we revisit our recently introduced network blocking
game models, which provide a framework for quantifying network topology
vulnerability in adversarial environments. We assume that the network
operator takes both security and economic goals into consideration. To
model these goals, we generalize previous models by introducing usage
costs and budget constraints for the operator. We study two natural con-
straint formulations, the maximum and the expected cost constraints, and
derive the feasible vulnerability/cost region. Since the proposed metrics
are based on game-theoretic models, computing them can be challenging.
To elucidate these challenges, we provide a thorough complexity analysis
for solving the proposed games.

Keywords Network topology robustness, robustness metrics, game theory,
blocking games, computational complexity

1 Introduction

The security of networks and systems continues to grow in importance as new
threats are emerging every day and attackers are becoming more and more
sophisticated. Consequently, achieving perfect security is in practice technically
impossible and/or economically impractical. Thus, the priority should be in
designing good security solutions that are not only technically viable, but also
economically cost effective. These, on the other hand, require defining security
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metrics, which are necessary to assess networks’ overall level of security and to
quantify the set of feasible security/cost operating points and the corresponding
Pareto optimal frontier representing the best achievable security/cost tradeoff.

In this paper, we propose a framework for deriving such metrics and find-
ing the feasible vulnerability/cost tradeoff region. First, we revisit our recently
introduced network blocking game (NBG) models. These models provide a
framework for deriving metrics for the vulnerability of network topologies in
adversarial environments. Second, we introduce costs and budget constraints
and combine them with the proposed metrics to draw the optimal1 vulnera-
bility/cost tradeoff curve. Since the proposed metrics are derived from game-
theoretic models, understanding the complexity of solving such games is of key
importance. In this paper, we thoroughly analyze the complexity of computing
such metrics.

The vulnerability of a network is defined as the potential loss in connectivity
due to the action of a strategic adversary who tries to disrupt the network con-
nectivity by attacking some resources. One of the main challenges to finding vul-
nerability/robustness metrics for network topologies resides in quantifying the
robustness of a network in the presence of such a strategic attacker, who might
exploit the structure of the network topology to design harmful attacks. This is
to be distinguished from the complementary and more conventional reliability
analysis, where failures result from random events such as natural disasters,
human errors, etc.

Quantifying the robustness or, equivalently, the vulnerability of topologies
has been extensively studied [11, 12, 14, 16, 22, 23, 37, 38, 39]; however, the
simultaneous and strategic decision making of the defender and the adversary,
which is key to the security of information systems, has received only little atten-
tion. For a discussion of previously proposed robustness metrics, see Section 6.
To study strategic decision making, game-theoretic models have been gaining
a lot of interest in the security community. In game-theoretic approaches, the
security problem is modeled as a game and the equilibria are analyzed to predict
each player’s action.

Recently, network blocking games (NBGs) have been introduced and applied
to the analysis of the robustness of network topologies in adversarial environ-
ments [18, 19, 20, 28, 27]. An NBG takes the communication model and the
topology of a network as inputs, and casts the strategic interactions between an
adversary and a defender, called the network operator, as a two-player game.
The operator chooses a set of network resources (e.g., links and nodes) as the
communication infrastructure, while the adversary targets a resource to disrupt
the communication. The communication model defines the type of “connec-
tivity” that the network operator is trying to achieve, the set of resources she
can choose from, and the payoffs (operator’s loss and attacker’s gain) of the
game. The Nash equilibrium strategies are then used to predict the attacker’s
most likely actions; and the adversary’s equilibrium payoff2 serves as a metric

1We use “optimal” in the sense that the defender chooses a best response to the attacker’s
strategy.

2 It has been shown that the attacker’s payoff is the same in every equilibrium of a net-
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for the vulnerability (i.e., inverse robustness) of the network. This metric has
a number of interesting properties that are discussed in this paper by using
illustrative examples. Furthermore, for the communications models considered
here, the metrics correspond to well-known graph-theoretic notions.

As our metrics are derived from game-theoretic models, computing them
requires solving the games. With respect to the complexity of computing a Nash
equilibrium, NBG models present two challenges. First, at least one player’s
strategy set (and, hence, the payoff matrix) is only implicitly defined, and the
actual strategy set needs to be computed from the input of the game, i.e.,
from the communication model and the network topology. Second, even though
checking whether a given action is a feasible strategy can be done efficiently
in most NBG models, computing a player’s complete strategy set is inherently
difficult. In fact, in most cases, the payoff matrix is exponential in size. As a
consequence, solving network blocking games can be expected to be harder than
solving games for which the payoff matrix is “explicitly given”. For such explicit
games, computing a NE has been shown to be PPAD-complete (Polynomial
Parity Arguments on Directed graphs), a class of problems that are believed to
be hard, but not necessarily NP-hard [6]. In this paper, we show that computing
a Nash equilibrium of a network blocking game is NP-hard in general.

Interestingly though, in the series of NBG papers cited above, new algo-
rithms have been developed to efficiently compute a Nash equilibrium in a
number of communication models: All-to-All (e.g., Ethernet) networks with
constant [19] and linear loss [28], All-to-One (e.g., access and sensor) networks
[27], and Supply-Demand networks [18]. These algorithms are mostly based
on the theory of network flows and, for some models, on the minimization of
submodular functions. More precisely, the problem of finding a Nash equilib-
rium is cast as a network flow problem (or a submodular function minimization
problem), which enables bypassing the computation of the payoff matrix.

In previous NBG models [19, 20, 28, 27], it is assumed that – when there
is no attack – the operator is indifferent to which strategy she is using. When
there is an attack, the operator is only interested in minimizing her expected
loss due to attacks and remains indifferent among the strategies that achieve
this minimum loss. Implicitly, the assumption is that network resources can
be used at zero cost. This assumption is however not realistic. In practice,
network elements have positive usage costs (e.g., operation and maintenance
costs, protection costs, quality of service), and these costs may be non-uniform.
Consequently, a strategy that achieves the minimum loss can have very high cost
and thus be undesirable to the operator. Furthermore, network operators do not
have an unlimited budget, which could allow them to use any combination of
network resources. In sum, in addition to security, there are other economic and
technical goals that network operators have to take into consideration. Often,
security and economic goals conflict with each other implying the necessity for
the operator to find a balance between them.

work blocking game; thus, it suffices to find a single equilibrium in order to characterize the
robustness of a network.
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In [18], a usage cost model as well as a budget constraint have been intro-
duced for the particular case of Supply-Demand (S-D) networks. This budget
constraint means that the network operator can use a set of network elements
(links) only if its associated cost does not exceed a given budget. In the present
paper, we extend the budget constraint idea to network blocking games in gen-
eral. We introduce a unit cost for each network resource and use these unit costs
to define a cumulative cost for a set of network resources. We also assume that
the operator has a fix budget to operate the network. We integrate the costs and
budget into the game by defining two constraint formulations: maximum and
expected cost. In the maximum cost formulation, the constraint is applied to the
operator’s pure strategies, while in the expected cost formulation, it is applied
to her mixed strategies. We then define a NBG for the given budget limit and
use the equilibrium payoff as the metric for vulnerability corresponding to that
budget.

The budget limit can be considered as the network operator’s security in-
vestment to reduce vulnerability. When there is no investment, the system is
expected to have maximum vulnerability. On the other hand, if the operator has
an infinite budget, then a (clever) investment can reduce the vulnerability to a
minimum value. By letting the budget vary between its minimum and its maxi-
mum values, we obtain the vulnerability/cost tradeoff curve. Notice that in this
game model, an equilibrium means that the defender chooses a best response to
the attacker strategy. As a consequence, each achieved vulnerability (hence the
obtained tradeoff) can be considered as “optimal” in the best response sense.

Since computing the vulnerability metric (i.e. solving the game) is in general
NP-hard for the model without constraints, one can readily conclude that it re-
mains NP-hard for the constrained model (the absence of constraint is equivalent
to an infinite budget). Hence, the interesting question is: “what happens to the
complexity of the models cited above, for which there exist efficient algorithms
in the unconstrained case?” We show that for these models, the maximum
cost constraint leads to NP-hard problems while the expected cost constraint
formulation leads to games that can be solved efficiently.

This article is a synthesis and extension of the authors’ previously published
conference papers [25] and [26]. It builds upon the study in [18], but considers
a more general setting and presents many additional results. [18] is the first
study to introduce the idea of a budget limit and usage costs in the context of
a NBG. However, it considers only the special case of Supply-Demand networks
and (what we call here) the maximum cost constraint. Furthermore, it does not
provide a complexity analysis. In the present paper, we consider the general
definition of NBGs, introduce a second cost constraint, and provide a thorough
complexity analysis.

The main contributions of this paper are the following. We show that solving
a blocking game is generally NP-hard (Theorem 1). We generalize the network
blocking game model by introducing usage costs to network links and a budget
limit for the operator and consider two constraint formulations: the maximum
cost constraint (MCC) and the expected cost constraint (ECC). We analyze the
complexity of solving the constrained game in the previously proposed mod-
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els, which can be solved efficiently in the unconstrained case. We show that
the problem of determining the equilibrium payoff is NP-hard under the MCC
(Theorem 2) and, for the ECC model, we show how to solve the game in polyno-
mial time given a linear characterization of the operator’s mixed strategy space
(Theorem 3). We provide complete proofs for all our results, and we provide the
formulas of our proposed metric and discuss it in the case of some known com-
munication models and classic graph topologies. Finally, we apply our tradeoff
analysis to two real-life network topologies.

This paper can be viewed as composed of two main parts. In the first
part, assuming that the network operator only worries about security, we revisit
the previously introduced NBG models and discuss our proposed vulnerability
metric (Section 2). We also prove the NP-completeness of computing such a
metric in the general case (Section 3). In the second part of the paper, assuming
that the operator has additional economic goals, we present our cost model,
derive the vulnerability/cost tradeoff, and apply the tradeoff analysis to two
real-life network topologies in Section 4. We also reconsider the computational
complexity in this case (Section 5). We briefly discuss related work on the
vulnerability of network topologies in Section 6. Finally, we provide concluding
remarks and discuss some future work in Section 7. For ease of reading, all
proofs have been moved to the appendix.

Notational Conventions

We use lower case bold letters (e.g., α) and upper case bold letters (e.g., S) to
denote column vectors and matrices, respectively. We use the prime sign (′) to
denote transposition, and subindices (e.g., αT ) to refer to elements of vectors.
For the presentation and the analysis of our model, we make use of a number
of symbols. For quick reference to these symbols, we list them in Table 1.

2 Unconstrained Network Blocking Games

In this section, we summarize the previous work on network blocking games.
Since these models do not consider a budget constraint, we will refer to them
as unconstrained network blocking games whenever the distinction is important.
We first discuss three examples of communication models. Then, we present the
game model and discuss the characterization of its Nash equilibria. Finally, we
discuss the properties of our proposed vulnerability metrics by using illustrative
examples.

As it was stated earlier, network blocking games are defined by the commu-
nication model and the topology of the network. The topology of the network is
represented by a connected simple graph G = (V,E), where V is the set of nodes
and E is the set of links. The edges can be undirected or directed depending on
the communication models (as we will see later). The network operator wants
to guarantee “some” connectivity between the nodes of the network. For this,
she selects a collection T ⊆ E of the links as the communication infrastructure.
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Table 1: List of Symbols

Symbol Description

G = (V,E) graph representing the network topology
T set of feasible collections for the operator
λ(T, e) usage of link e in collection T
θ∗ vulnerability of the network
µ attack costs for the adversary
we unit usage cost of link e
w(T ) cumulative usage cost of collection T
w(α) expected usage cost of strategy α
b operator’s budget

All-to-One communication model
r designated node

Supply-Demand communication model
s(v) supply at node v
d(v) demand at node v

The type of connectivity and the set of feasible collections (denoted by T ) are
determined by the communication model (see the next subsection for examples
of communication models).

In this paper, we only consider failures that are due to the actions of a ma-
licious and strategic adversary. Assuming that the operator chooses collection
T for her communication and that a given link e in the network fails, if e /∈ T ,
then the communication is not affected at all. If, on the other hand, e ∈ T ,
then e can no longer be used: the operator incurs some usage loss, which is how
much she would transmit using the link if it were intact. For a given T and e,
we let λ(T, e) denote this usage loss (or zero if e 6∈ T ). Notice that all results
presented in this paper also hold if the attacker is allowed to attack nodes as
well3, but for ease of presentation, we restrict our analysis to link attacks.

2.1 Communication Models

The communication model defines the type of “connectivity” that the network
operator is trying to achieve, the set of feasible collections T which she can
use for that, and the usage losses λ(T, e) for the network elements. Next, we
introduce three examples of a communication model. Note that, in these three
communication models, the set of feasible subsets T is only implicitly defined.
Furthermore, the size of the set T is in general exponential for each model;
hence, there exists no efficient algorithm to list all elements of T .

3The results for both node and edge attacks can be derived using node splitting.
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2.1.1 Supply-Demand Model

In a Supply-Demand (S-D) network [18], the operator wants to carry a fixed
amount of goods from a nonempty set S ⊆ V of “source” nodes to a nonempty
set D ⊆ V of “destination” nodes using the network links. We assume that
S ∩ D = ∅ and that network links are directed. With each node u ∈ S, we
associate a nonnegative number s(u), the “supply” at u, and with each node
u ∈ D, we associate a nonnegative number d(u), the “demand” at u. We
consider uncapacitated networks, where each link can carry an unlimited amount
of goods4. We also assume that links carry only integer amounts of goods and
that the total amount of goods to be carried from S to D is also a given positive
integer.

To transport the goods, the network operator chooses a collection of links
that forms a feasible (integer) flow. A feasible flow T ∈ T is a function that
assigns to each link e the amount of goods T (e) (≥ 0) it carries, such that
the conservation of flow property is satisfied at each node. Hence, the set of
collections T is equal to the set of all feasible flows.

The usage (loss) λ(T, e) is defined to be the amount of goods T (e) that flow
T assigns to link e. This is how much the operator will lose if she uses feasible
flow T ∈ T and link e fails.

2.1.2 All-to-One Model

In an All-to-One network [27], the primary goal of the network operator is to
enable all nodes to communicate with a designated node r. This models sensor
and access networks, where all nodes are trying to reach a gateway or data
collection node (or, alternatively, a set of nodes, which can be modeled by a
designated super-node).

To get all nodes connected to r, the network operator chooses a collection
of links T that forms a spanning tree. Hence, the set of feasible collections T is
the set of all spanning trees. In practice, a spanning tree can be implemented,
for example, as the next-hop forwarding table entries for r, which are stored at
the individual nodes of the network.

Let the network be connected using a spanning tree T . Then, if a given link
e ∈ E fails, some nodes might no longer be able to communicate with r and can
be considered lost for the network operator. Thus, we define the usage (loss)
λ(T, e) as the number of nodes that are disconnected from r when the operator
chooses T to connect the network and link e fails.

2.1.3 All-to-All Model

In an All-to-All network [19, 28], the goal of the network operator is to enable
each node to communicate with every other node, using the minimum number
of links. For example, this is the case for bridged Ethernet LANs, where every

4The analysis of capacitated network follows from the study in this paper, but it is not
considered in this paper due to space limitation.
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node should be able to “logically” communicate with every other node, but the
topology has to be loop-free. Assuming that links are undirected, spanning trees
are the subgraph structures that (looplessly) connect all nodes with the mini-
mum number of links. Hence, the network operator selects a spanning tree as
communication infrastructure, and the set of feasible collections T corresponds
to the set of all spanning trees.

Let the network be connected using a spanning tree T and assume that link
e fails. If link e does not belong to T , then the network remains connected and
the operator does not lose any connectivity. If, on the other hand, e ∈ T , the
network is cut into two separate components that are unable to communicate.
Now, if e is a link connecting a leaf to the rest of the spanning tree, only that
leaf gets disconnected and all the other nodes can still reach each other. In
this case, the operator loses some connectivity, but the loss can be considered
minor. If, on the other hand, the removal of link e cuts the network into two
components of comparable size, then connections between many pairs of nodes
are now missing, and the loss to the operator is considerably larger. To capture
this phenomenon, the usage (loss) λ(T, e) is defined as the size of the smaller
connected component of G(V, T \e), where G(V, T \e) is the subgraph containing
only the links in T \ e.

2.2 Game Model

Given a communication model and the topology of a network, we define a two-
player game between the network operator and a strategic attacker as follows.
The network operator wants to guarantee “some” connectivity by choosing a
feasible collection of links in the network (i.e., her strategy space is the set T of
feasible collections). The type of connectivity and the set of feasible collections
are defined by the communication model, as previously discussed. At the same
time, a strategic and malicious adversary is trying to disrupt the communication
by attacking a link (i.e., her strategy space is the set E of links in the network).
We assume that to successfully attack a link e, the adversary has to spend some
effort which is quantified by a cost of attack µe. The players’ payoffs are defined
as follows: when the operator picks collection T and the attacker targets link e,
the operator loses λ(T, e) (as defined above), and the attacker gets a net reward
of λ(T, e) − µe. Intuitively, if the attack costs are too high, the adversary will
probably not launch an attack. To capture this, we assume that the attacker has
the option not to launch an attack, which results in zero loss for the operator
and zero gain for the attacker.

We consider mixed strategy Nash equilibria, where the network operator
chooses a distribution (denoted by α) over the set T , and the attacker chooses
a distribution (denoted by β) over the set E or the option of not attacking. We
assume that the operator’s goal is to minimize her expected loss, while the at-
tacker’s objective is to maximize her expected net reward. Formally, the operator
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chooses α to minimize L(α,β) defined as

L(α,β) =
∑
T∈T

∑
e∈E

αTβeλ(T, e) , (1)

while the attacker chooses β to maximize R(α,β) defined as

R(α,β) = L(α,β)−
∑
e∈E

βeµe (2)

or not attacking if the maximum is negative.

2.3 Equilibrium Characterization

Here, we recall the notions of polyhedra and blockers, and discuss how they can
be used to characterize the Nash equilibria of the game (see [17, Chap. 4] for
more details).

Let Λ be the adversary’s payoff matrix. We let the rows of Λ be denoted by

λT , T ∈ T , where the entries of each row vector λT ∈ R|E|≥0 are given by λ(T, e),
e ∈ E. We define the polyhedron PΛ associated with Λ as the vector sum of
the convex hull of the row vectors λT , T ∈ T and the nonnegative orthant. In

other words, a vector x ∈ R|E|≥0 is an element of PΛ iff it can be expressed as the
sum of a nonnegative vector and a convex linear combination of the rows of Λ.
This polyhedron can also be expressed as

PΛ =
{
x ∈ R|E|≥0

∣∣∣ ∃α ∈ R|T |≥0

(
Λ′α ≤ x ∧ α′1 ≥ 1

)}
. (3)

Next, the blocker bl(PΛ) of PΛ is the polyhedron defined as

bl(PΛ) :=
{
y ∈ R|E|≥0

∣∣∣ ∀x ∈ PΛ (y′x ≥ 1)
}
. (4)

In other words, a vector y ∈ R|E|≥0 is an element of bl(PΛ) iff its product with
each element of PΛ is at least 1. Since the blocker bl(PΛ) is also a polyhedron,

its set of vertices (i.e., extreme points) is well-defined. For each vertex ω ∈ R|E|≥0

of the blocker, we define the quantity

θ(ω) :=
1∑

e∈E ωe

(
1−

∑
e∈E

ωeµe

)
. (5)

A vertex of the blocker is called critical if it maximizes the quantity θ(ω), i.e.,
θ(ω) = maxω̃ θ(ω̃). Finally, we let θ̃ denote the maximum quantity.

Since the attacker has the option to not attack and get a payoff of zero, it is
not hard to show that there does not exist an equilibrium in which the attacker
receives a negative expected payoff. In [17], it has been shown that in every Nash
equilibrium where the attacker launches an attack, her strategy corresponds to
a critical vertex or a convex combination of critical vertices. Her equilibrium
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Table 2: Vulnerability Metrics of Some Communication Models

Communication Model Vulnerability Metric θ∗

S-D (uncapacitated) maxU⊆V : d(Ū)−s(Ū)≥1

(
(d(Ū)−s(Ū))−µ(δ(U))

|δ(U)|

)
All-to-One maxU⊆V \{r}

(
|U |−µ(δ(U))
|δ(U)|

)
All-to-All (linear loss, µ = 0) ≤ max

U⊂V : 0<|U |≤ |V |2

(
|U |
δ(U)

)
All-to-All (constant loss) [19] maxU partition

(
|U|−1−µ(δ(U))

|δ(U)|

)
Notations: For a set U ⊂ V , δ(U) is the set of links connecting nodes in U and
nodes in Ū , where Ū = V \U . U = {U1, U2, . . . , U|U|} is a partition of the graph
into connected components and δ(U) is the set of edges whose end nodes belong
to different components.

payoff is also shown to be the same in all equilibria and can be written as θ∗ =
max(0, θ̃), where θ̃ = maxω {θ(ω)}, where ω is a critical vertex of the blocker
bl(PΛ). As a consequence, if this blocker can be “efficiently” characterized, then
an efficient algorithm can be derived to solve the maximization problem and,
hence, the game.

2.4 Vulnerability Metric

In the analysis of the general NBG [17, Chap. 4], it has been shown that the
attacker’s equilibrium payoff θ∗ is a property of (i.e., solely determined by)
the topology of the network, the communication model, and the attack costs µ.
Furthermore, this unique equilibrium payoff reflects both the network operator’s
expected loss due to attack as well as the attacker’s willingness to attack. For a
given µ, a low θ∗ indicates that operating the network has low expected loss due
to attack, that is, the network is robust against attacks. If, on the other hand,
θ∗ is high, then the expected loss is also high, and the network can be considered
vulnerable. As such, θ∗ has been proposed [19] as a measure of network topology
vulnerability (i.e., inverse robustness) in an adversarial environment.

Another property of θ∗ is that, when µ = 0 (the case of the most powerful
attacker), it can be related to well-known graph-theory notions. Table 2 gives
the formulas of the vulnerability metric for the communication models intro-
duced in Subection 2.1. We also provide the formula for the All-to-All model
with constant loss introduced in [19].

Supply-Demand Model For the S-D model, the vulnerability metric θ∗

(shown in the first row of Table 2 and illustrated in Figure 1a) can be read
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(b) All-to-One
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(c) All-to-All Linear Loss
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U3

U4 U5

(d) All-to-All Constant Loss

Figure 1: Illustration of the vulnerability metrics: (a) S-D, (b) All-to-One, (c)
All-to-All Linear Loss, (d) All-to-All Constant Loss.

as follow: For the set of nodes U , d(U)− s(D) is the total excess demand in Ū .
This excess demand has to be produced from sources in U and carried over the
edges δ(U) going from U to Ū (i.e. the edge-cut induced by U). The total cost
of attacking those edges is µ(δ(U)). Hence, if the attacker were able to attack
all edges in δ(U), the net attack reward would be d(Ū) − s(Ū) − µ(δ(U)) (the
term in the numerator). However, since the attacker can target only one link,

her payoff is given by the expected net reward d(Ū)−s(Ū)
|δ(U)| − µ(δ(U))

|δ(U)| when she

targets links in δ(U) with uniform probability. The Nash equilibrium theorem
tells us that the vulnerability metric θ∗ corresponds to the maximum possible
value of this expected net reward, taken over all subset of nodes U . To design
the optimal attack strategy that achieves θ∗, the attacker first chooses a set of
nodes U that maximizes this expected net reward and then targets the edges of
δ(U) with uniform probability.

This vulnerability metric (i.e. the maximum possible expected payoff) can
be interpreted as the attacker’s willingness to attack. If it is negative (when the
attack costs µ are large), the attacker will not launch an attack (she will instead
choose the no-attack strategy). The larger it is, the more attractive the network

is for the attacker. Also, notice that its first term d(Ū)−s(Ū)
|δ(U)| corresponds to the

expected non-satisfied demand due the attacker’s action (i.e. the defender’s
loss due to the attack). For a fixed µ, a larger value for this term indicates a
more vulnerable network. In sum, the vulnerability metric θ∗ reflects both the
attacker’s willingness to attack as well as the defender’s expected loss.
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All-to-One Model For the All-to-One model (shown in the second row of
Table 2 and illustrated in Figure 1b), θ∗ can be interpreted in the same way.
Here, U is a set of nodes that does not include the designated node r. When
edges in δ(U) are attacked, all nodes in U are disconnected from r and hence are
lost for the defender. The total net attack reward for targeting those edges is

given by |U |−µ(δ(U)) and the corresponding expected net reward is |U |−µ(δ(U))
|δ(U)| .

The vulnerability metric θ∗ is the maximum of such a quantity over all U . When
designing her attack, the attacker chooses a set U that maximize this quantity
and uniformly targets the edges in δ(U). It is noteworthy that in this All-to-One
model, when µ = 0, θ∗ is equal the inverse of the persistence of the graph of the
network, a metric that has previously been proposed in [10] to quantify graph
robustness (although in a non-game-theoretic framework).

All-to-All Models The vulnerability metric for the All-to-All model with
linear loss is shown in the third row of Table 2 and is illustrated in Figure 1c.
It can be interpreted as an All-to-One where the source is required to belong
to the largest connected component. In this case, θ∗ is tightly upper bounded
by the Cheeger constant [7] (also called the edge-expansion) of the graph when
µ = 0.

Finally, the vulnerability metric for the All-to-All model with constant loss
[19] (Figure 1d) can be read as follow: U = {U1, U2, . . . , U|U|} is a partition of
the graph into connected components, δ(U) is the set of edges whose end nodes
belong to different components, and |U| is the number of connected components.
By uniformly attacking the edges in δ(U), the attacker gets an expected net

attack reward equal to |U|−1−µ(δ(U))
|δ(U)| and the vulnerability metric θ∗ is equal to

its maximum possible value, taken over all partitions U . To design her attack,
the attacker chooses a partition U that achieves θ∗ and uniformly targets the
edges in δ(U). In this case, when µ = 0, θ∗ can be related the spanning tree
packing (STP) number of the graph, i.e. the number edge-disjoint spanning trees
(STP = d 1

θ∗ e) [35].

Comparison with Other Metrics To contrast our proposed metric with
conventional ones, consider the example S-D network shown in Figure 2. We

S
7

D1

5

D2

2

p = 1
2

p = 1
2

Figure 2: Example of an S-D network.
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will compare θ∗ with the metrics (i.e. attacker payoff) obtained from (1) a
totally random attacker who uniformly targets all links in the network, (2) a
min-cut attacker who first computes an edge-min-cut of the graph and then
uniformly targets them, and (3) a risk-averse attacker who tries to get the
maximum deterministic attack reward. In this comparison, we assume that
there is no attack cost (i.e. µ = 0). The network contains one source S with
a supply of s(S) = 7 of goods and two destinations D1 and D2 with respective
demands d(D1) = 5 and d(D2) = 2.

For this network, the equilibrium strategy for the attacker is to uniformly
target the two links marked with the diamonds, and the corresponding expected
reward (i.e. the vulnerability metric θ∗) is equal to 7

2 . A totally random attacker
targets each link with probability 1

12 and gets an expected reward of 7
12 , which

is much less than θ∗. Indeed, such a naive strategy “wastes” a lot of attack
effort by targeting links that do not carry goods in the defender’s equilibrium
strategy. A more clever strategy, which leads to a very commonly used metric
(i.e. the connectivity), is that of a min-cut attacker. In the figure, the two min-
cuts of the graph are marked by the dashed and dotted lines, respectively. The
attacker can choose either one of the two cuts and picks a link to attack with
probability 1

3 . The corresponding expected attack reward is 7
3 < θ∗. It can be

shown that in general, the reward obtained by a min-cut attacker is always less
than or equal to θ∗. Notice that the total traffic carried through the min-cut is
larger than the total traffic carried over the links targeted by the NE attacker
(proposed in this paper). However, the min-cut contains more links and leads
to a smaller expected reward. Finally, the risk-averse attacker targets the only
link going to destination D2 and receives a payoff of 2 < θ∗. Indeed, in general,
a risk-averse attacker will always get a smaller payoff.

This simple example shows that a NE attacker (as proposed in this paper)
is more sophisticated because she uses complete knowledge about the network
to design her attack strategy. In reality, full knowledge of the graph of the net-
work is not always available: the attacker (and sometimes even the defender)
might have only partial knowledge about the graph. Despite this limitation, the
vulnerability metric proposed here can be considered as a (worst-case) bench-
mark, when the attacker has complete information and both the attacker and
the defender are fully rational.

2.5 Example: Vulnerability Values of Classic Graphs

We use our proposed metrics to compute the vulnerability of some classic graph
topologies. We have assumed that the attack costs µ = 0, which corresponds
to the most powerful attacker in our model. Table 3 shows the vulnerability for
the complete graph, the wheel, the ring, the star, and the path topologies. We
have computed the vulnerabilities for the All-to-One and All-to-All (linear loss)
communication models. For the S-D communication model, the metric depends
on where the sources S and the destinations D are located in the network. We
leave such discussion for interested readers. We also provide the formulas for
the All-to-All model with constant loss introduced in [19]. Recall that for this
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Table 3: Vulnerability Values of Some Common Graphs

Communication Model

Graph All-to-One All-to-All (linear) All-to-All
(constant)

Complete 1 2
n

2
n

Ring n−1
2

n
4

n−1
n

Wheel

1, if hub = r

n−1
3 , if hub 6= r

 n
n+4 , if n is even

n+1
n+5 , if n is odd

1
2

Star

1, if hub = r

n− 1, if hub 6= r
1 1

Path

n− 1, if r is a leaf

nr, if r is not leaf

n
2 1

Notation: n denotes the number of nodes in the graph, r is the designated node
of the All-to-One model, nr is the size of the largest subgraph connected to r.

model, if the attacked link belongs to spanning tree chosen by the defender,
then she loses a constant amount which is normalized to 1. As a consequence,
the vulnerability θ∗ ∈ [0, 1].

As a metric for robustness, understanding the computational complexity
of calculating θ∗ is of primal importance. In the next section, we discuss the
complexity of computing a Nash equilibrium in the unconstrained NBG model.

3 Computational Complexity of the
Unconstrained Game

In this section, we show that solving a NBG is generally NP-hard. Recall that
computing a Nash equilibrium in general two-player games has been shown to
be PPAD-complete. Zero-sum, two-player games, on the other hand, can be
cast as linear programs and, hence, can be solved in polynomial time using
linear programming tools. In all these cases, the input of the computational
problem is assumed to be the payoff matrix. For NBG models, however, only
an implicit description of the payoff matrix is given. In addition, the payoff
matrix is potentially exponential in size, which makes NBG models even more
challenging to deal with.

The following theorem shows that, indeed, computing a NE for a general
blocking game is NP-hard. We prove this by reducing a well-known NP-hard
problem, the Knapsack Problem (KP), to the problem of computing the at-
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tacker’s equilibrium payoff, which we formalize as the Equilibrium Problem
(EP). KP and EP are formally defined as follows.

Definition 1 (Knapsack Problem [KP]). Given N items, where item i =
1, . . . , N has weight ci and value vi, a capacity C, and a value V , is there a
subset S whose sum weight is at most C (i.e.,

∑
i∈S ci ≤ C), and whose sum

value is at least V (i.e.,
∑
i∈S vi ≥ V )?

Definition 2 (Equilibrium Problem [EP]). Given a set of elements E, a polyno-
mial-time computable function IT∈T for testing T ∈ T (i.e., the feasibility
of collections), a polynomial-time computable usage function λ(T, e), a vector

of attack costs µ ∈ R|E|≥0 , and a threshold payoff value p, is the adversary’s
equilibrium payoff less than or equal to p?

The above formulation of EP allows us to easily show the computational
complexity of all the problems relevant to NBGs. First, if the adversary’s equi-
librium payoff can be efficiently computed, then EP can also be solved efficiently.
Conversely, if EP is NP-hard, then computing the adversary’s equilibrium pay-
off is also necessarily NP-hard. Second, for similar reasons, we also have that
computing a mixed-strategy equilibrium (α,β) of the game is at least as hard
as EP.

The following theorem shows that EP is NP-hard.

Theorem 1. The Knapsack Problem is polynomial-time reducible to the Equi-
librium Problem.

The proof of the theorem can be found in Appendix A.
Thus, solving a NBG is generally NP-hard. Interestingly, however, efficient

algorithms have been derived to compute a NE for the models discussed in
Subsection 2.1 (the All-to-All with linear loss, the All-to-One, and the Supply-
Demand communication models). It is our conjecture that there exists a class
of blocking games (defined by the loss function λ(T, e)) that can be solved
efficiently even when the payoff matrix is exponential in size (indeed the solution
has to somehow bypass using the payoff matrix).

4 Budget Contraints

In the unconstrained NBG model, the operator is only interested in minimizing
her expected loss due to attacks, without taking any other economic or technical
concerns into consideration. More formally, the unconstrained model assumes
that – when there is no attack – the operator is indifferent to which strategy
she is using. In practice, however, network operators also have to take economic
goals and constraints into consideration. Since network elements and, hence,
feasible collections can have varying costs, these economic considerations can
affect the operator’s strategic choices. Furthermore, as a more robust strategy
can entail higher costs, economic and security goals can conflict with each other.
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Hence, the operator has to balance between security and cost, which will affect
her choice of strategy.

In this section, we show how economic factors can be taken into consideration
using the framework described in the first part of the paper. We first introduce
costs for the network resources and discuss how they can be interpreted. These
costs can be integrated in the game in several ways. In this paper, we use them
to formulate budget constraints on the operator. More precisely, we assume
that the operator has a fixed budget b and she can use a strategy only if its
associated cost fits into this budget. We then define a game for each budget
limit b and derive a vulnerability metric θ∗(b) that is parametrized by b. Finally,
by varying b in the range of all possible budgets, we derive the tradeoff curve.

4.1 Cost Model

A network link is often associated with some cost, which models the amount
of effort (money, energy, time, etc.) that the operator needs to spend to use
the link (e.g. setup, maintenance, protection). Furthermore, links usually have
different costs. In [18], a usage cost model was introduced and discussed for
the particular case of the S-D communication model. Here, we extend this cost
model to network blocking games in general. Recall that λ(T, e) quantifies the
usage of link e when the operator employs collection T . This usage can model,
for example, the amount of traffic on link e or the number of active paths
between nodes that traverse link e. We assume that each link e has some unit
cost we, so that using the link costs weλ(T, e) to the operator if she employs
collection T .

This unit cost can model multiple economic and technical factors. For exam-
ple, the operator might have to lease or pay for some of the network elements
in order to use them. If we let we be the unit usage price for a link, then
λ(T, e)we is the total cost of using link e when the operator selects collection T .
Using a network element might also require energy consumption, which in turn
can require expenditure from the operator. In this case, we is the unit energy
cost and λ(T, e)we is the total energy cost associated with e and T . Another
interpretation is that we is the unit protection cost, so that weλ(T, e) is the
total cost of protecting against a loss equal to λ(T, e). Network links can also
have negative effects on the quality of the traffic that goes through them, e.g.,
introduce different delay or jitter. If we let we, be the delay (or jitter) of that
link, λ(T, e)we is the total amount of delay (or jitter) experienced by all traffic
that goes through that link.

Henceforth, we will assume that, for each link e, these economic and technical
factors have been added together, and a constant we is given. Furthermore, we
will refer to all of these factors together as costs (hence we is called the unit
cost of link e).

Based on the above definition, the cumulative cost of using the resources in
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a collection T is given by

w(T ) :=
∑
e∈E

λ(T, e)we . (6)

If the network operator randomly chooses a collection T according to some
probability distribution α (as, e.g., in the mixed strategy of the game introduced
in the previous section), then we can define the operator’s expected cost as

w(α) :=
∑
T∈T

αTw(T ) =
∑
e∈E

we
∑
T∈T

αTλ(T, e) . (7)

The operator can take these costs into account in several ways. In this
paper, they are used to formulate budget constraints, which we discuss in the
next subsection.

4.2 Budget Constraints

We assume that the operator has a fixed budget b ∈ R≥0.Therefore, her objec-
tive is to minimize her expected loss (see Equation (1)) by choosing the most
secure strategy that satisfies her budget constraint. This budget constraint can
be formulated in multiple ways. Next, we introduce and study two straight-
forward formulations, the maximum and the expected (or average) cost budget
constraints.

4.2.1 Maximum Cost Budget Constraint

In the maximum cost constraint (MCC), we require that for a given budget
b, the operator only uses collections whose cumulative cost (see Equation (6))
are less than or equal to b. Formally, the pure strategy set of the operator is
restricted to

T (b) = {T ∈ T | w(T ) ≤ b} . (8)

The maximum cost constraint is best-suited for budget limits that are deter-
mined by the amount of preallocated resources available. In this case, the cost
of a link can be the amount of resources needed (e.g., energy consumption) to
operate the link and the budget limit can be the amount of resources available
(e.g., amount of power available).

4.2.2 Expected Cost Budget Constraint

The maximum cost constraint misses to capture certain situations. For instance,
when the amount of allocated resources can be modified during operation, e.g.,
resources can be leased, the budget limit should apply to the average or, equiv-
alently, the expected cost of a strategy during continuous periods of operation.
Thus, in our second budget constraint formulation, which we will refer to as the
expected cost constraint (ECC), we only require the expected (or average) cost
of the operator to not exceed the budget limit.
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Under the expected cost constraint with a budget limit b, the operator can
employ a mixed strategy only if its expected cost (see Equation (7)) is less than
or equal to b. Formally, the set of mixed strategies available to the operator is

A(b) =
{
α ∈ [0, 1]|T |

∣∣∣ w(α) ≤ b ∧ 1′α = 1
}
. (9)

Note that the above formulation generalizes the classic notion of mixed strate-
gies in game theory, where the set of mixed strategies is always the set of all
distributions over the set of pure strategies. Here, a mixed strategy is chosen
from a predefined subset of distributions.

4.3 Constrained Game

Having defined the set of available strategies (pure for MCC and mixed for
ECC), we can now setup the constrained game in a similar way to the uncon-
strained game presented in Subsection 2.2. We are interested in mixed strategy
Nash equilibria, where the operator picks a distribution α over T (b) (for MCC)
or from the set A(b) (for ECC), while the attacker chooses a distribution β over
the set of links. The attacker’s Nash equilibrium payoff is denoted θ∗(b) for a
game with budget limit b.

Using the same interpretation as in Subsection 2.2, the attacker’s NE payoff
θ∗(b) can be used to quantify the vulnerability (i.e., inverse robustness) of the
network when the operator’s budget is b. By varying b, one can draw the Pareto
frontier between the region of achievable vulnerability/budget points and the
region of unachievable ones, as was done in [18] for the particular case of S-D
networks with the maximum cost constraint.

4.4 Vulnerability/Cost Tradeoff

(a) Network topology
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(b) Vulnerability / budget tradeoff curve

Figure 3: Example of vulnerability / budget tradeoff in the All-to-All commu-
nication model.
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In this section, we illustrate the vulnerability/cost tradeoff using the All-to-
All communication model on the topology depicted in Figure 3a. The link costs
we are randomly chosen between 0 and 0.6, which makes the average cost of
a spanning tree equal to 2.1. For each value of b, a game is played with the
defender’s strategy set given by Equation (8) for the maximum cost constraint
(MCC) and by Equation (9) for the expected (or average) cost constraint (ECC).
In all games, the attacker’s strategy set is the set of all links and the cost of
attack is µ = 0. Figure 3b shows the vulnerability θ∗(b) as a function of the
budget b for both the MCC and the ECC. Observe that the two curves are very
close to each other, but vulnerability for the MCC is always at least as high as
for the ECC.

Once the tradeoff curve is determined, the next question is finding the opti-
mal operating point on this frontier. The optimal operating point depends on
the specific operator’s preferences with respect to the vulnerability and the bud-
get. These preferences can be quantified by a utility function U(θ∗, b). In gen-
eral, the optimal operating point is determined by solving a 2-dimensional opti-
mization problem which, in this case, can be reduced to a one-dimensional opti-
mization, and can be written as b∗ = argmax{U(θ∗(b), b) : (θ∗(b), b) is feasible}.

4.5 Application Example

In this subsection, we apply the tradeoff analysis presented above to two example
topologies. We consider an All-to-All communication model with linear loss
(Subsection 2.1.3), where the goal of the network operator is to enable each
node to communicate with every other node.

Figure 4: Topology of the Abilene network.
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Figure 5: Topology of the ISP3 network.

The first topology (shown in Figure 4) is based on the Abilene network, which
was created by the Internet2 community and connects regional network aggre-
gation points to provide advanced network capabilities to over 230 Internet2
university, corporate, and affiliate member institutions in the US. It contains 11
backbone routers, 22 point of presence routers, and 139 access routers [31] (see
Figure 4). The second one (shown in Figure 5), which we will call ISP3 [32], is
the topology of a modern US Internet service provider (ISP)5. Due to space lim-
itation, the topology is shown in Appendix E. It contains 16 Backbone Routers
(A-P), 32 Point of Presence Routers (A1-P2) and 170 Access Routers (A1a-P2g).
Table 4 summarizes the key properties of these topologies.

The unit cost of a link is assumed to be equal to its propagation delay. In
other words, the network operator’s goal is to choose links that form a robust
spanning tree while trying to keep the total propagation delay low. The links’
propagation delays are given in Table 5 (we list the thirty largest delay values
for each network). We have only considered the expected cost constraint (ECC)
4.2.2. In both cases, solving the ECC game took less than a second on an
average desktop computer. Recall that for the maximum cost constraint (MCC)
model, finding a a Nash equilibrium is NP-hard. Figure 6 shows the expected
vulnerability/cost tradeoff curves for the two networks.

5We cannot reveal the ISP’s identity because of disclosure agreement.
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Figure 6: Cost / vulnerability tradeoff curves for the example networks.

Table 4: Statistics of the Example Networks

Abilene ISP3

Number of nodes 172 218

Number of links 175 226

5 Computational Complexity of the Constrained
Game

In this section, we discuss the complexity of solving budget-constrained network
blocking games. However, since solving an unconstrained NBG is in general
NP-hard (as shown in Theorem 1), we readily have that solving a NBG under
a budget constraint6 is also NP-hard generally. Consequently, we focus our
discussion on the communication models introduced in Subsection 2.1, for which
efficient algorithms exist to compute the NE payoff in the unconstrained game,
and discuss computational complexity under the MCC and ECC.

5.1 NP-Hardness of the Maximum Cost Constraint

We first show that the maximum cost constraint formulation leads to NP-hard
problems. More specifically, we show that computing the equilibrium payoff of a
network blocking game is NP-hard under a maximum cost budget constraint in
the Supply-Demand, All-to-One, and All-to-All communication models, which
were previously shown to be efficiently solvable without a budget constraint.

6The unconstrained game is the special case of b→∞.
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Theorem 2. Computing the NE payoff of an NBG under a maximum cost
budget constraint is NP-hard in the (a) S-D communication model, the (b) All-
to-All communication model, and the (c) All-to-One communication model.

The proof of the theorem can be found in Appendix B. We show NP-hardness
by reducing a well-known NP-hard problem, the Partition Problem (PP) [30], to
the problem of deciding whether the equilibrium payoff in a given network under
a maximum cost constraint is at most a certain value. We refer to the latter
problem as the Equilibrium Problem with Maximum Cost Constraint (EPMAX).

For each communication model, we show how an instance of EPMAX (i.e.,
a network, a budget limit, and a payoff value) can be constructed in polynomial
time from an instance of PP. We then show that PP is true (i.e., it has a
solution A,B) if and only if the constructed EPMAX is true. Consequently, the
Equilibrium Problem with Maximum Cost Constraint has to be at least as hard
as the Partition Problem. Since the proof techniques follow the same lines for
all models, we only give a detailed proof for the S-D model.

5.2 Efficient Algorithms for the Expected Cost Constraint

In this section, we show how the expected cost constrained game can be solved
efficiently for the models introduced in Subsection 2.1. Recall that, in Sub-
section 2.3, we provided a derivation of the attacker’s Nash equilibrium payoff
in the unconstrained game model using the theory of blocking pairs of polyhe-
dra. In this section, we use a similar derivation to show how polynomial-time
algorithms can be devised to solve the game under an expected cost constraint.

First, by following the detailed analytical steps presented in [17, Chap. 4]
for the unconstrained game, we can show that the attacker’s equilibrium strate-
gies correspond to the vertices of the blocker bl(PΛ) in the constrained game
as well. In the constrained game, the definition of the polyhedron PΛ in Equa-
tion (3) includes an additional linear inequality, which corresponds to the budget
constraint. Since the expected cost w(α) defined in Equation (9) can also be
expressed as w(α) = w′Λ′α, the constrained polyhedron can be written as

PΛ =
{
x ∈ R|E|≥0

∣∣∣ ∃α ∈ R|T |≥0

(
Λ′α ≤ x ∧ α′1 ≥ 1 ∧ w′Λ′α ≤ b

)}
. (10)

Notice that the above definition of PΛ involves the matrix Λ, which is generally
exponential in size. As a consequence, this definition of PΛ cannot be used
directly to solve the game efficiently.

To derive a polynomial-time solution for the ECC model, we first characterize
the blocker bl(PΛ) of PΛ using a set of linear equations whose cardinality is poly-
nomial in the size of the network. We do so by showing that if a polynomial-size
characterization exists for the unconstrained polyhedron, then there also exists
one for the blocker of the expected cost constrained polyhedron. We then show
how one can use linear programming tools to efficiently compute the equilibrium
payoff based on a polynomial-size characterization of the blocker. Finally, we
provide a characterization for each of the models discussed in Subsection 2.1.
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Assume that the polyhedron PΛ of the unconstrained game has a polynomial-
size linear characterization

PΛ = {x | ∃f (Sf ≤ x ∧Cf ≥ d)} , (11)

where f ∈ Rk≥0 is a vector of polynomial length (i.e., k is a polynomial function
of the network size), while vector d and matrices S and C are all constants
of polynomial size. Then, the polyhedron associated with the expected cost
constrained game is given by

PΛ = {x | ∃f (Sf ≤ x ∧Cf ≥ d ∧w′Sf ≤ b)} . (12)

The following theorem gives a polynomial-size characterization of the blocker
in the expected cost constrained game.

Theorem 3. The blocker of the polyhedron defined as

PΛ = {x | ∃f (Sf ≤ x ∧Cf ≥ d ∧w′Sf ≤ b)} , (13)

where f ∈ Rk≥0, S ∈ R|E|×k≥0 , C ∈ Rl×k≥0 , and d ∈ Rl≥0, can be characterized as

bl(PΛ) =
{
y | ∃K, g,h

(
g ≤ y ∧C ′h ≤ S′wK + S′g ∧ d′h− bK ≥ 1

)}
,
(14)

where K ∈ R≥0, g ∈ R|E|≥0 , and h ∈ Rl≥0.

The proof of the theorem can be found in Appendix C.
Recall that our goal is to efficiently compute the equilibrium payoff θ∗ =

max{θ̃, 0} = max{maxy∈bl(PΛ) θ(y), 0} of the game, which we use as a metric for
topology vulnerability. The most straightforward solution would be to formulate
this as a maximization problem subject to the set of linear constraints given
by the above characterization of bl(PΛ). Unfortunately, the desired objective
function θ = 1

1′y (1− µ′y) cannot be expressed as a linear function in y because

of the division by 1′y. Thus, to formulate the problem as a linear program, we
“scale” our variables. We introduce a new variable φ, which is equal to 1

1′y ,

and we divide the original variables and constants by 1′y. The resulting linear
program is:

Maximize φ− µ′β (15)

subject to

1′β = 1 (16)

g ≤ β (17)

C ′h ≤ S′wK + S′g (18)

d′h− bK ≥ φ , (19)

where K,φ ∈ R≥0, β, g ∈ R|E|≥0 , and h ∈ Rl≥0. Note that we let the scaled
version of y be denoted by β, as an optimal solution can be shown to be an
equilibrium strategy for the adversary.
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We now apply the above results to the Supply-Demand, All-to-One, and
All-to-All communication models. Since the analysis follows the same lines for
all models, we provide details only for the Supply-Demand model. For the All-
to-One and All-to-All models, we describe the main points without providing
details.

5.2.1 Characterizing the Blocker for the Supply-Demand Commu-
nication Model

In the case of the Supply-Demand model, we begin by finding a polynomial-
size characterization of the unconstrained polyhedron PΛ. First, consider the
restricted unconstrained polyhedron

P̂Λ =
{
x ∈ R|E|≥0

∣∣∣ ∃α ∈ R|T |≥0

(
Λ′α = x ∧ α′1 = 1

)}
. (20)

By comparing the above formula with definition of PΛ (see Equation (3)), we
can see two differences. First, P̂Λ uses convex linear combinations of the rows,
while PΛ uses any linear combination. Second, P̂Λ consists of the vectors x that
are equal to a combination, while PΛ consists of any vector x that is greater
than or equal to a combination. From these differences, it follows readily that
every element of PΛ is the sum of an element of P̂Λ and a non-negative vector.
Thus, if we have a polynomial-size characterization for P̂Λ, we readily have one
for PΛ. The following theorem characterizes P̂Λ.

Theorem 4. In the Supply-Demand communication model, the following hold.

1. For every convex linear combination α, the function f∗ : E 7→ R≥0 defined
as f∗(e) =

∑
T∈T αTλ(T, e) is a feasible real-valued network flow.

2. For every feasible real-valued network flow f∗ : E 7→ R≥0, there is a convex
linear combination α such that, for every edge e, the flow value f∗(e) is
equal to

∑
T∈T αTλ(T, e).

The proof of the theorem can be found in Appendix D.
Using the above theorem, we can characterize PΛ as

PΛ =
{
x ∈ R|E|≥0

∣∣∣ ∃ real-valued network flow f (∀e ∈ E : f(e) ≤ xe)
}
, (21)

which can formally be written as

PΛ =

{
x ∈ R|E|≥0

∣∣∣∣ ∃f : E 7→ R≥0

(
∀e ∈ E : f(e) ≤ xe

∧ ∀v ∈ V :
∑

(u,v)∈E

f(u, v)−
∑

(v,w)∈E

f(v, w) = s(v)− d(v)

)}
.

(22)
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Then, from Theorem 3, we have that the constrained blocker has the follow-
ing polynomial-size characterization:

bl(PΛ) =

{
y ∈ R|E|≥0

∣∣∣∣ ∃π : V 7→ R,K ∈ R≥0

(∑
v∈V

π(v)(s(v)− d(v))− bK ≥ 1

∧ ∀e = (u, v) ∈ E : π(u)− π(v) ≤ ye + weK

)}
.

(23)

5.2.2 Characterizing the Blocker for the All-to-One Communication
Model

In [27], it was shown that the polyhedron in the All-to-One model can be char-
acterized using a set of multi-source flows. More specifically, for each element
of the polyhedron, there exists a single-commodity flow that is dominated by
the element and has the following properties: the designated node r is a sink
with a demand of N − 1, and every other node is a source with a supply of 1.
Formally,

PΛ =

{
x ∈ R|E|≥0

∣∣∣∣ ∃f : E 7→ R≥0

(
∀e ∈ E : f(e) ≤ xe

∧ ∀v ∈ V \ {r} :
∑

(v,w)∈E

f(v, w)−
∑

(u,v)∈E

f(u, v) ≥ 1

)}
.

(24)

Then, from Theorem 3, we have that the expected cost constrained blocker has
the following polynomial-size characterization:

bl(PΛ) =

{
y ∈ R|E|≥0

∣∣∣∣ ∃π : V \ {r} 7→ R≥0,K ∈ R≥0

(∑
v∈V

π(v)− bK ≥ 1

∧ ∀e = (u, v) ∈ E : π(u)− π(v) ≤ ye + weK

)}
,

(25)

where π(r) ≡ 0 by definition to simplify the equation.

5.2.3 Characterizing the Blocker for the All-to-All Communication
Model

In [28], it was shown that the polyhedron in the All-to-All model be character-
ized using a set of multi-commodity flows. In this characterization, there exists
a dominated multi-commodity flow for each element of the polyhedron. In each
flow, there are |V | commodities corresponding to the nodes of the network. For
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each commodity, the corresponding node is a sink, while all the other nodes are
sources with a uniform (but variable) production. Finally, the total amount of
transported flow has to be at least 1. Formally,

P̂Λ =

{
x ∈ R|E|≥0

∣∣∣∣ ∃f : V × E 7→ R≥0,α ∈ R|V |≥0

(∑
r∈V

αr ≥ 1

∧ ∀r ∈ V, v ∈ V \ {r} :
∑

{u,v}∈E

fr(v, u)− fr(u, v) ≥ αr

∧ ∀{u, v} = e ∈ E : xe ≥
∑
r∈V

fr(u, v) + fr(v, u)

)}
. (26)

Then, from Theorem 3, we have that the expected cost constrained blocker
has the following polynomial-size characterization:

bl(PΛ) =

{
y ∈R|E|≥0

∣∣∣∣ ∃π : V × V 7→ R≥0,K ∈ R≥0

(
∀r ∈ V :

∑
v∈V

πr(v)− bK ≥ 1 ∧

∀r ∈ V, e = (u, v) ∈ E : |πr(u)− πr(v)| ≤ ye + weK

)}
, (27)

where πr(r) ≡ 0 by definition to simplify the equation.

6 Related Work on Network Topology
Robustness

In this section, we discuss some of the related work on assessing and quantifying
the robustness of network topologies. First, we provide a brief overview of
results from complex-network theory, which are concerned with the robustness of
certain classes of networks. Then, we discuss some graph-theory based metrics,
such as connectivity and toughness. Finally, we give examples of metrics which
are derived by making strategic assumptions about the adversaries.

6.1 Robustness of Complex Networks

The question of network topology robustness against random faults and non-
random attacks has attracted considerable interest from the complex-networks
community. Albert, Jeong, and Barabási use simulations to study the error-
tolerance of two classes of networks: scale-free networks and exponential net-
works [1]. Scale-free networks, such as the Internet or social networks, have
degree distributions which decay according to power-laws. On the other hand,
the degree distributions of exponential networks, such as the Erdős-Rényi (E-R)
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random graph model [13] or the Watts-Strogatz small-world model [40], decay
exponentially. The authors find that scale-free networks display an unexpected
degree of robustness against random faults, that is, against the removal of a
random subset of the nodes. However, these networks are very vulnerable to
non-random attacks, which remove the highest-degree nodes. On the other
hand, exponential networks are less robust against random faults, but more
resilient to attacks.

Callaway et al. study percolation on graphs with general degree distribu-
tion [5]. Percolation models on random graphs can represent processes that
remove network nodes in a random or targeted manner, which can model the
failure of internet routers or power transmission lines. Assuming general degree
distribution, the authors give exact solutions for a variety of cases, including
uniform site percolation (i.e., random node removal), uniform bond percolation
(i.e., uniform edge removal), and models in which probabilities depend on node
degree. These exact solutions can be used to predict the behavior of networked
systems under quite general types of breakdowns and interference, and they con-
firm previous results on the resilience of scale-free networks to random-faults and
non-random attacks.

Cohen et al. also study the robustness of scale-free graphs against random
faults and intentional attacks using percolation theory [8, 9]. In the case of
random faults, the authors establish a general condition for the critical fraction
of nodes that need to be removed before the network disintegrates. By applying
their analysis to the physical structure of the Internet, they find that it is
impressively robust, with a critical fraction above 99%. In the case of intentional
attacks, they confirm that scale-free graphs are not as robust as against random
faults, since the critical fraction is much lower. Furthermore, they show that the
disruptive effects of intentional attacks become relevant even before the critical
threshold is reached, as the average distance between nodes in the largest cluster
is substantially higher near the threshold.

Bollobás and Riordan consider the robustness of linearized chord diagram
(LCD) graphs, a more rigorously defined version of the Barabási-Albert model [4].
Their findings can be summarized as follow: Against random node removal, LCD
graphs are much more robust than E-R graphs with the same number of edges.
However, against malicious attacks, which remove nodes with higher degrees,
LCD graphs are more vulnerable than E-R graphs.

Moreira et al. examine the robustness of scale-free networks against a range
of attacks from random faults to intentional attacks [34]. In their model, it
is assumed that the probability that an edge remains intact depends on the
degrees of the adjacent nodes. Then, by varying the level of dependence, one can
interpolate between random faults and non-random attacks. The authors show
that, in their model, the critical percolation threshold, at which connectivity is
lost, depends on both the degree distribution and the randomness level of the
failures. Consequently, network robustness can be controlled through adjusting
the topological bias in the failure process.

Paul et al. consider the problem of maximizing the robustness of networks
while keeping their costs constant [36]. Their study provides network design
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guidelines which maximize robustness against both random failures and non-
random attacks while keeping the average degree of the network constant. They
find optimal parameters for scale-free networks (i.e., networks having degree dis-
tributions with a single power-law regime), networks having degree distributions
with two power-law regimes, and networks having degree distributions with two
peaks. For these network models, they show that the optimal network design is
the one in which all nodes except one have the same degree and one node has a
very large degree.

While the work of Paul et al. provides guidelines for creating robust networks
from scratch, Beygelzimer et al. consider the problem of improving the robust-
ness of an existing network without substantial modifications [3]. In this work,
robustness is measured as either the size of the largest connected component or
the shortest path length between pairs of nodes after an attack (i.e., deleting
the nodes with the highest degrees) or random faults (i.e., removing a random
subset of nodes). The authors present empirical results showing how robustness
is affected by various strategies for rewiring and creating edges, such as random
addition and preferential rewiring. Based on these results, they conclude that
a modest alteration of an initially scale-free network can substantially improve
its robustness against attacks, and they identify the most effective modification
strategies.

In contrast to our work, these studies are mostly concerned with the ro-
bustness of certain classes of networks, not with specific given topologies. Also
contrary to our work, their measures of robustness are not primarily motivated
by usage models, such as the All-to-One or S-D models in our work. Finally,
they do not consider the strategic interaction between the defender and the at-
tacker, which we have captured in this paper by using a game-theoretic model.

6.2 Graph-Theoretic Metrics

Connectivity The vertex-connectivity (or edge-connectivity) of a graph mea-
sures the minimum number of vertices (or edges) that have to be removed in
order to disconnect the graph [15]. More formally, a graph is said to be k-vertex-
connected (or k-edge-connected) if it remains connected whenever fewer than k
vertices (or edges) are removed, and vertex-connectivity (or edge-connectivity)
of a graph is defined as the largest k for which it is k-vertex-connected (or k-
edge-connected). Connectivity has many appealing theoretical properties, such
as being closely related to the number of independent paths between vertices
(see Menger’s theorem [15]). Furthermore, the problem of computing the con-
nectivity of a graph can be solved in polynomial time.

Connectivity is very widely used as a measure for the robustness of network
topologies. For example, in the case of wireless sensor networks, vertex- and
edge-connectivity are undoubtedly the most prevalent metrics [29, 41, 33, 24,
42, 21]. For another example in support of using connectivity, see [12].

Unfortunately, as a metric for robustness against strategic attacks, connec-
tivity suffers from a number of weaknesses. Firs, connectivity is only concerned
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with the size of smallest disconnecting attack. In practice, however, the maxi-
mum attack-size that should be anticipated – in terms of the number of vertices
(or edges) that the adversary can remove from the network – may be difficult to
estimate. Second, connectivity is only concerned with whether an attack discon-
nects a network or not. In other words, connectivity does not take into account
how disintegrated the network becomes as a result of an attack. In practice,
however, an operator needs to care about how much functionality is retained
by the network after an attack. Finally, similarly to the studies discussed in
the previous subsection, connectivity does not build on a communication model
(i.e., type of connectivity to be achieved). As a consequence, it performs sub-
optimally for specific cases, such as the ones shown in the examples of Figure 2
and Figure 7 below.

(a) (b)

Figure 7: Illustration of connectivity not characterizing the robustness of sensor
network topologies well. The edge-connectivity of both graphs is 2, and thus,
they are equally robust in terms of edge-connectivity. However, when the two
dashed edges are removed, only a single vertex is separated from the sink in
graph (a), while all of the vertices are separated from the sink in graph (b).

In this example, each of the two graphs represents a sensor network, in which
the operator’s objective is to transfer measurement data from the sensor nodes
to the sink node, represented by the shaded vertex. Both of these graphs have
an edge-connectivity of two, and therefore, they are supposed to be equally
robust. However, by removing two edges, we can separate at most one vertex
from the sink in graph (a), while we can separate all vertices in graph (b) (the
dashed edges represent such attacks in the figure). In other words, a strategic
attack removing two edges can only slightly affect graph (a) but can almost
completely disable graph (b). Hence, we can hardly say that the networks are
equally robust.

Using our proposed metric, the vulnerability of graph (a) is θ∗ = 1, and the
targeted links are the five links connecting the sink to the five sensor nodes,
each with probability 1

5 . For graph (b), θ∗ = 5
2 > 1, with the targeted links

being the two links connecting the sink to its two neighbors, each attacked with
probability 1

2 . In other words, sensor network (b) is more vulnerable than sensor
network (a), which is more intuitive than what is suggested using connectivity.

29



Toughness Graph toughness is another well-known topology robustness met-
ric with several theoretical results [2]. The toughness of a graph measures the
minimum of the ratio between the number of vertices removed and the number
of components in the resulting graph. Unfortunately, the problem of computing
the toughness of a graph is NP-hard. Hence, it is not very well-suited for general
practical use, especially when one is concerned with large graphs.

Strength Graph strength is a metric that is very similar to graph toughness.
The strength of a graph measures the minimum of the ratio between the number
of edges removed and the increase in the number of components in the resulting
graph [10]. Intuitively, one can think of strength as the “edge-attack version” of
toughness. However, unlike toughness, the strength of a graph can be computed
in polynomial time. Compared to connectivity, the advantage of graph strength
as a robustness metric is that it considers attacks of various sizes due to the fact
that the minimum is taken over all possible edge removal attacks.

Summary While the above metrics are appealing because of their simplicity
and/or analytical tractability, it is very hard to argue about how well they
capture the notion of robustness. The main reason for this is that they approach
the problem of quantifying robustness from a purely graph-theoretic perspective;
hence, the corresponding attacker models have to be derived from the metrics
and – as a results – usually assume that the strategic nature of the adversary is
very limited. In general, they suffer from the same weaknesses as connectivity.

6.3 Attacker-Model-Driven Studies

In this section, we list examples of previous work that approach the problem of
studying robustness by starting with an attacker model and “defining” robust-
ness with respect to this model. However, none of these studies consider the
simultaneous and strategic decision making of the defender and the attacker,
on which the game-theoretic framework of our network blocking games model is
built. Rather, they assume that the attacker will chose from a set of elementary
strategies, such as removing the nodes with the highest betweenness, and will
not anticipate the defender’s response.

Dall’Asta et al. study the robustness of networks against various strategies
that remove the most central nodes in the network [11]. These strategies are
based on ranking the nodes using degree, strength, outreach, distance strength,
topological betweenness, and weighted betweenness (for the definitions of these
metrics, see [11]). To quantify the damage sustained by a network after an
attack removed some nodes, the authors introduce three metrics: the ratio
between the total node strength of the damaged network’s largest component
and that of the intact network, the ratio of total node outreach, and the ratio
of total node distance strength. Their study shows that complex networks are
more fragile than expected form the analysis of topological quantities when the
traffic characteristics are taken into account.
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Estrada studies the property of graphs being both sparse and highly con-
nected, which is known as “good expansion” (GE) [14]. Using spectral graph
theory, the author introduces a new metric for measuring the good expansion
of networks, and classifies 51 real-world networks as being GE or non-GE. By
comparing the networks based on their robustness against intentional attacks
against nodes, the author argues that being GE and having uniform degree
distribution makes networks robust.

Holme et al. study the resilience of complex networks to attacks targeting
nodes and edges [23]. They evaluate several existing network models using
attack strategies that are based on removing nodes in descending order of either
their degree or their betweenness centrality. Their study shows that the Erdős-
Rényi random graph model is the most robust of the evaluated models.

7 Conclusions & Future Work

In this paper, we have considered the problem of finding metrics for the vulner-
ability (or robustness) of network topologies in adversarial environments. We
have proposed a metric derived from our previously introduced network block-
ing game (NBG) models and studied its computational complexity. We have
also discussed the properties of the metric in several examples.

In previous NBG models, the network operator was assumed to be inter-
ested only in security. We have generalized the models by considering a situa-
tion where, in addition to security, the network operator takes other economic
and/or technical goals into consideration. We have modeled these additional
goals as budget constraints on the operator and have studied two constraint
formulations: the maximum and the expected cost constraints. We have shown
that the maximum cost formulation leads to NP-hard problems and proposed
efficient solutions for the expected cost formulation. Using these formulations,
we have derived the optimal vulnerability/cost tradeoff curve and have applied
our tradeoff analysis to two real-life network topologies.

Several future directions are being considered as follow ups of this work.
First, we conjecture that there exists a class of games that, despite an exponen-
tial-size payoff matrix, can be solved efficiently. Early results indicate that for
such a class, the equilibrium payoff satisfies certain properties such as submod-
ularity and subadditivity. Second, in this paper, we have assumed that the
adversary can attack only one link at a time. In general, an attacker could have
the capability to attack two or more network resources in one shot. We plan to
study such multiple elements attack scenarios in the future. Another natural
extension of this study is the case where several communication models are run
on top of the same underlying network resources. Finally, in this study, we
have only considered failures that are due to the actions of a malicious attacker.
However, in reality, failures can also be due to random events. A more complete
study should concurrently consider both types of failures.
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A Proof of Theorem 1

Proof. Given an instance (c,v, C, V ) of the Knapsack Problem, we construct an
instance (E, IT∈T , λ(T, e), p) of the Equilibrium Problem as follows.

• Let the set of elements be E = {1, . . . , N},

• let the feasibility testing function be IT∈T =

{
true if

∑
i∈T ci ≤ C

false otherwise,

• let the usage function be λ(T, e) = 1∑
i∈T vi

,

• let the adversary’s attack costs be µ = 0,

• let the threshold payoff value be p = 1
V .
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First, observe that we define the function λ(T, e) such that its value does not
depend on e. Consequently, the payoff of the game does not depend on the
adversary’s strategy, it only depends on the operator’s strategy. To simplify our
proof, we will let λ(T ) denote λ(T, e) for any e.

It is easy to see that both IT∈T and λ(T ) can be computed in polynomial
time, as they only require computing the sum of a given set and then comparing
it with a constant or calculating its reciprocal. Furthermore, every step of the
reduction can also be carried out in time and space that is polynomial in the
size of the Knapsack Problem instance. Hence, the reduction itself can be done
in polynomial time.

We claim that the given instance of KP is true if and only if the above
instance of EP is true. To prove this, we have to show that there exists a subset
S ⊆ {1, . . . , N} whose sum weight is at most W and whose sum value is at least
V if and only if the adversary’s equilibrium payoff in the above game is less
than or equal to p.

First, assume that there exists a subset S satisfying the constraints of the
Knapsack Problem. Then, we have to show that the adversary’s equilibrium
payoff is at most p. Let α∗ be the mixed strategy that uses only subset S.
Formally, let α∗S = 1 and, for every other subset U 6= S, let α∗U = 0. If the
operator uses this strategy, her loss is

λ(S) =
1∑
i∈S vi

=
1

V
= p , (28)

regardless of the strategy of the adversary. Therefore, the operator’s equilibrium
loss and, hence, the adversary’s equilibrium payoff have to be at most p.

Second, assume that there does not exist a subset satisfying the constraints
of the Knapsack Problem. In this case, we have to show that the adversary’s
equilibrium payoff is greater than p. Since no subset satisfies the constraints of
KP, we have that, for every T ∈ T ,

∑
i∈T vi < V and, hence,

λ(T ) =
1∑
i∈T vi

>
1

V
= p . (29)

Consequently, the expected loss for any operator strategy α is∑
T∈T

αT λ(T )︸ ︷︷ ︸
>p

> p . (30)

Therefore, the adversary’s equilibrium payoff has to be greater than p.

B Proof of Theorem 2

In this appendix section, we provide a prof of Theorem 2, which states that
computing the NE payoff of an NBG under a maximum cost budget constraint
is NP-hard in the S-D, the All-to-All, and the All-to-One communication models.
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Since the proof techniques follow the same lines for all communication models,
we only give a detailed proof for the S-D model. For the All-to-One and All-
to-All models, we describe the main points of the proofs without providing the
details.

Proof. We show NP-hardness by reducing a well-known NP-hard problem, the
Partition Problem (PP) [30], to the problem of deciding whether the equilibrium
payoff in a given network under a maximum cost constraint is at most a certain
value. We refer to the latter problem as the Equilibrium Problem with Maximum
Cost Constraint (EPMAX). These computational problems are defined formally
as follows.

Definition 3 (Partition Problem [PP]). Given a multiset of positive integers
{x1, . . . , xn}, is there a partitioning of the multiset into two disjoint subsets A
and B such that

∑
x∈A x =

∑
x∈B x ?

Definition 4 (Equilibrium Problem with Maximum Cost Constraint [EPMAX]).
Given a communication model, a network G, a budget limit b, and a threshold
payoff value p, is the adversary’s equilibrium payoff less than or equal to p?

For each communication model, we show how an instance of EPMAX (i.e.,
a network, a budget limit, and a payoff value) can be constructed in polynomial
time from an instance of PP. We then show that PP is true (i.e., it has a
solution A,B) if and only if the constructed EPMAX is true. Consequently, the
Equilibrium Problem with Maximum Cost Constraint has to be at least as hard
as the Partition Problem.

To simplify the notations in our proofs, we define the expected loss of an
edge e ∈ E in a given operator strategy α as

L(e) =
∑
T∈T

αTλ(T, e) . (31)

From the definitions of the player’s payoffs, it follows readily that the adversary’s
expected payoff is L(e)−µe and the operator’s loss is L(e) if the adversary uses
the pure strategy e.

B.1 Proof of Theorem 2 for the Supply-Demand Commu-
nication Model

s
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1b

x1

0

1

0

0

2a

2b

x2

0

2

0

0

n-1

na

nb

xn

0

d

0

0

Figure 8: Illustration for the proof of Theorem 2 for the S-D model. Numbers
along edges indicate unit costs.
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Given an instance of PP, we build an instance of EPMAX as follows.

• Let the topology of the network be the following (see Figure 8 for an
illustration): There is one source node, denoted by s, one sink node,
denoted by d, and 3n − 1 other nodes, which are denoted by 1a, 1b, 1,
2a, 2b, 2, . . ., na, and nb.

Node s is connected to nodes 1a and 1b with edges having unit costs of x1

and 0, respectively. Nodes ia and ib, for i < n, are connected to node i
with edges having zero unit cost. Node i is connected to node (i+1)a and
(i+ 1)b with edges having unit costs of xi+1 and 0, respectively. Finally,
nodes na and nb are connected to node d with edges having zero unit cost.

• Let the capacity of the links and the amount of goods to be moved from
s to d be 1.

• Let the operator’s budget be b = 1
2

∑n
i=1 xi.

• Let the threshold payoff value be p = 1
2 .

We claim that the adversary’s equilibrium payoff in the above network is greater
than p if and only if PP does not have a solution.

First, we assume that the multiset {x1, . . . , xn} can be partitioned into two
subsets A and B of equal sum, i.e., we assume that PP has a solution. In this
case, we have to show that the equilibrium payoff is at most 1

2 . First, notice
that, since the total amount of goods to be moved from s to d is 1 and the
amount of flow on each edge is either 0 or 1, the set of feasible integer flows is
equal to the set of directed s-d paths.

We now show that there exist two disjoint paths (or, equivalently, flows)
that satisfy the operator’s budget constraint. The first path (or, equivalently,
the first set of links with positive flow values) consists of the edges (i − 1, ia)
and (ia, i) for each xi ∈ A, and of the edges (i−1, ib) and (ib, i) for each xi 6∈ A.
The second path consists of the remaining edges. In other words, the first flow
takes the “path above” whenever xi ∈ A and the “path below” whenever xi 6∈ A,
while the second flow does the contrary. By our assumption, the costs of the two
flows are equal and given by

∑
xi∈A xi =

∑
xi∈B xi = 1

2

∑
i xi = b; thus, they

both satisfy the maximum cost budget constraint. By assigning a probability
of 1

2 to each flow, we obtain an operator strategy for which the expected loss
of every edge is at most to 1

2 . If the operator employs this strategy, then the
adversary’s payoff for every pure and, consequently, every mixed strategy is at
most 1

2 . Therefore, the adversary’s equilibrium payoff has to be at most 1
2 .

Second, we assume that the multiset {x1, . . . , xn} cannot be partitioned into
two subsets of equal sum, that is, we assume that PP does not have a solution.
In this case, we have to show that the adversary’s equilibrium payoff is greater
than 1

2 . If the equilibrium payoff were at most 1
2 , then there would exist an

operator strategy α in which the expected loss of every edge is at most 1
2 . We

show that no such strategy can exist using contradiction.
First, suppose that the contrary holds, i.e., that there exists a strategy in

which the expected loss of every edge is at most 1
2 . Because of the maximum
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cost budget constraint, the cost of every pure strategy is less than or equal to
b = 1

2

∑
i xi. Moreover, we can show that this inequality has to be strict. Every

pure strategy is an s-d path, and if the cost of a path I were equal to b, then
there would exist a subset of links I ( {1, 2, . . . , n} such that

∑
i∈I xi = b. By

letting A = {xi | i ∈ I} and B = {xi | i /∈ I}, we would get a solution for
PP, which would contradict the assumption that the set cannot be partitioned.
Thus, the cost of every pure strategy is strictly less than b and, as a consequence,
the expected cost of every mixed strategy is also strictly less than b. Formally,
we have ∑

e∈E
L(e)we < b =

1

2

n∑
i=1

xi =
∑
e∈E

1

2
we . (32)

Now, observe that the expected loss L(e) of an edge e in the S-D model is equal
to the expected amount of flow on that edge. Since the total amount of goods to
be moved is 1 and each pair of “above” and “below” edges is an s-d cut, the sum
of the flows on any pair of above and below edges is equal 1. Thus, for every
pair of above and below edges ea and eb, we have L(ea) + L(eb) ≥ 1 = 1

2 + 1
2 .

By combining this with the supposition that the expected loss of every edge is
at most 1

2 , we have that

∀e ∈ E : L(e) =
1

2
, (33)

which implies that ∑
e∈E

L(e)we =
∑
e∈E

1

2
we . (34)

However, this leads to a contradiction with Equation (32), which proves that
there exists no operator strategy for which the expected loss of every edge is at
most 1

2 . Therefore, if PP does not have a solution, then the equilibrium payoff
is greater than 1

2 .

B.2 Proof of Theorem 2 for the All-to-One model

For the All-to-One communication model, we construct an instance of EPMAX
from an instance of PP as follows.

• Let the network topology be the following (see Figure 9 for an illustration):
There is a designated node r, which is connected to 2n nodes (denoted
by 1a, 1b, 2a, 2b, . . ., na and nb) in the form of a large star rooted at r.
Furthermore, there are n “outer” nodes, which are denoted by 1, 2, . . . ,
n. Node i is connected to nodes ia and ib with edges having unit costs of
xi and 0. The edges connecting nodes ia and ib to r both have zero unit
cost.

• Let the operator’s budget be b = 1
2

∑n
i=1 xi.

• Let the threshold payoff value be p = 3
2 .
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Figure 9: Illustration for the proof of Theorem 2 for the All-to-One model.

We claim that the adversary’s equilibrium payoff in the above network is greater
than 3

2 iff PP does not have a solution.
We first assume that PP has a solution (A,B), and use it to derive an

operator strategy for which the expected loss of every edge is at most 3
2 . For

that, we give a randomized algorithm for choosing pure strategies, and use the
distribution of its output as the operator’s mixed strategy. The algorithm for
choosing pure strategies (i.e., spanning trees) is the following. First, select all
the edges connected to r (i.e., use them with a probability of 1), which form
a star network. Then, choose either A or B with equal probability. Finally,
connect each outer node i to the star as follows: if xi belongs to the chosen set,
then use the edge that has cost xi; otherwise, use the other edge. Notice that this
algorithm randomly chooses one out of two spanning trees (with probabilities 1

2
and 1

2 ).
We now show that the expected loss of every edge is at most 3

2 . First, each
outer edge e is used with probability 1

2 , and its removal cuts off at most 1 node.
Hence, we have L(e) = 1

2 for these outer edges. Second, each inner edge e is
used with probability 1, and the number of nodes cut off by its removal is 1
with probability 1

2 (when the corresponding outer node is not connected to r
through it) and 2 with probability 1

2 (when the corresponding outer node is
connected through it). Hence, we have L(e) = 3

2 for inner edges. Therefore, we
have that L(e) ≤ 3

2 for every edge e, which proves that EPMAX is true if PP
has a solution.

Now, assume that PP does not have a solution. Then, we have that the cost
of every pure strategy is strictly less than b, which implies∑

e∈Eouter

weL(e) < b =
1

2

∑
i

xi =
∑

e∈Eouter

1

2
we , (35)

where Eouter is the set of outer edges. For a pair of edges ea = (ia, r) and
eb = (ib, r), we can easily show that L(ea) + L(eb) = 3. If there were an
operator strategy in which the expected loss of every edge was at most 3

2 , it

40



would follow that L(ea) = L(eb) = 3
2 , which would imply that expected loss of

every outer edge is at least 1
2 . However, this would lead to a contradiction with

Equation (35); thus, no such strategy can exist. Therefore, if PP does not have
a solution, then EPMAX is not true.

B.3 Proof of Theorem 2 for the All-to-All model

K2n

1

0x1 2

0

x2n 0

xn

Figure 10: Illustration for the proof of Theorem 2 for the All-to-All model.

For the All-to-All communication model, we construct an instance of EP-
MAX from an instance of PP as follows.

• Let the network topology be the following (see Figure 10 for an illustra-
tion): There is a large clique that consists of 2n nodes, and there are n
“outer” nodes, to which we refer as node 1, node 2, . . ., node n. Each node
i, where i = 1, . . . , n, is connected to two distinct nodes of the clique with
edges having unit costs of xi and 0, such that every node in the clique is
connected to exactly one outer node. Finally, edges between two nodes
inside the clique have zero unit cost.

• Let the operator’s budget be b = 1
2

∑n
i=1 xi.

• Let the threshold payoff value be p = 1
2 .

We claim that the adversary’s equilibrium payoff in the above network is greater
than 1

2 iff PP does not have a solution.
We first assume that PP has a solution (A,B), and use it to derive an

operator strategy in which the expected loss of every edge is at most 1
2 . For

that, we give a randomized algorithm for selecting pure strategies, and use the
distribution of its output as the operator’s mixed strategy. The algorithm for
selecting pure strategies (i.e., spanning trees) is the following. First, choose
uniformly at random a star subgraph of the K2n clique. Second, choose either
set A or set B with equal probability (that is, choose them at random with
probabilities 1

2 and 1
2 ). Finally, connect each outer node i to the star with

exactly one edge: if xi belongs to the chosen set, then use the edge that has
cost xi; otherwise, use the other edge.
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We now show that the expected loss of every link is at most 1
2 if the operator

uses this randomized algorithm as her mixed strategy. First, each outer edge e
is selected with probability 1

2 , and its removal cuts off one node if it has been
selected. Hence, we have L(e) = 1

2 for these outer links. Second, each link e
inside the clique is used with probability 1

n (the probability that a randomly
chosen star subgraph contains it), and its removal cuts off at most two nodes.
Hence, we have L(e) ≤ 2

n for these inner links7, which implies that L(e) ≤ 1
2 .

Therefore, if PP is true, then so is EPMAX.
Next, we assume that PP does not have a solution, and use the same ar-

gument as before to show that the cost of every pure strategy and, hence, the
expected cost of every mixed strategy is strictly less than b. Formally, we have∑

e∈Eouter

weL(e) < b =
1

2

∑
i

xi =
∑

e∈Eouter

1

2
we , (36)

where Eouter is the set of outer links. Now, consider an arbitrary pair of edges ea
and eb which connect the same outer node to the clique. It can be shown easily
that L(ea)+L(eb) ≥ 1. If there were an operator strategy in which the expected
loss of every edge were at most 1

2 , then it would follow that ∀e ∈ Eouter : L(e) =
1
2 . However, this would lead to a contradiction with Equation (36); thus, no
such strategy can exist. Therefore, if PP is not true, then neither is EPMAX.

C Proof of Theorem 3

Proof. We prove Equation (14) in two steps:

• Right-hand side (RHS) of Equation (14) ⊆ bl(PΛ): We have to show that
every element of the RHS of (14) is an element of the blocker bl(PΛ). Let
ỹ be an arbitrary element of the RHS, that is, a vector which satisfies the
constraints of the RHS with some g̃, h̃, and K̃. To prove that ỹ ∈ bl(PΛ),
we show that ỹ′x ≥ 1 for every x ∈ PΛ. To this end, we formulate the
following linear programming problem and show that its value is greater
than or equal to 1:

Minimize ỹ′x (37)

subject to

w′Sf ≤ b (38)

Sf ≤ x (39)

Cf ≥ d , (40)

where f ∈ Rk≥0 and x ∈ R|E|≥0 .

Observe that the constraints of the linear program correspond to the char-
acterization of PΛ. Consequently, the above linear program’s set of feasible

7Note that we can assume n ≥ 4 for the reduction.
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solutions projected to x is actually PΛ. Therefore, it suffices to show that
the value of the linear program is at least 1. To see this, consider the dual
linear program:

Maximize d′h− bK (41)

subject to

g ≤ ỹ (42)

C ′h ≤ S′wK + S′g , (43)

where K ∈ R≥0, g ∈ R|E|≥0 , and h ∈ Rl≥0.

Since ỹ satisfies the constraints of the RHS of Equation (14) with K̃, g̃, h̃,
we have that (K̃, g̃, h̃) is a feasible solution. Furthermore, we also have
that the objective function for this solution is at least 1. Thus, the value of
the dual program has to be at least 1. From linear programming duality,
it follows readily that the value of the primal program is also at least 1,
which proves that ỹ blocks every element of the polyhedron PΛ.

• bl(PΛ) ⊆ RHS of Equation (14): We have to show that every ỹ ∈ bl(PΛ)
satisfies the constraints of the RHS. To see this, first consider the linear
program from the first part of the proof. Since ỹ blocks every x ∈ PΛ,
we have that the value of the linear program and its dual is at least 1.
Now, consider an optimal solution (K̃, g̃, h̃) of the dual linear program.
Since the value of the dual linear program is at least 1, we have that 1 ≤
d′h̃− bK̃. Furthermore, we also have g̃ ≤ ỹ and C ′h̃ ≤ S′wK̃+S′g̃ from
the constraints of the linear program. Thus, ỹ satisfies the constraints of
the RHS of Equation (14) with K̃, g̃, h̃.

D Proof of Theorem 4

Proof. We prove the two cases separately.

1. We have to show that f∗ satisfies the flow conservation constraints. Recall
that, in the S-D model, a pure strategy T ∈ T is actually an integer flow.
In this proof, we will use the conventional notation for network flows,
and represent each pure strategy by a function f : E 7→ R≥0, where
f(u, v) is the flow along edge (u, v). Hence, for a given edge e = (u, v),∑
T∈T αTλ(T, e) can be written as

∑
f∈T αT f(u, v). Then, for each v ∈ V ,
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we have ∑
(v,w)∈E

f∗(v, w)−
∑

(u,v)∈E

f∗(u, v) (44)

=
∑

(v,w)∈E

∑
f∈T

αff(v, w)−
∑

(u,v)∈E

∑
f∈T

αff(u, v) (45)

=
∑
f∈T

αf

 ∑
(v,w)∈E

f(v, w)−
∑

(u,v)∈E

f(u, v)

 (46)

=
∑
f∈T

αf (s(v)− d(v)) (47)

=s(v)− d(v) . (48)

Note that, to get Equation (47), we used the fact that each pure strategy f
has to satisfy the flow conservation constraints, and to get Equation (48),
we used the fact that α is a convex linear combination.

2. We have to show the existence of a convex linear combination α. Our
proof is constructive, and it is based on the following greedy algorithm:

1: Let i = 1 and f∗1 = f∗.

2: Let Fi ⊆ E be the subset of edges to which f∗i assigns a positive flow
value.

3: Find a feasible integer flow fi of the original S-D network that uses
only the edges belonging to Fi.

4: Let αfi = mine∈E f
∗
i (e)/fi(e).

5: For each e ∈ E, let f∗i+1 = f∗i (e)− αfifi(e).
6: If the amount of flow transported by f∗i is greater than zero, then
i = i+ 1 and continue from Step 2. Otherwise, let the probability αf
of every other flow f be 0 and finish.8

Before proving the correctness of the algorithm, we have to introduce one
more notation: for i ≥ 1, let αi denote

∑i
j=1 αfj , and let α0 = 0.

First, we show that every f∗i+1 is a feasible flow given that the supply and
demand values are scaled down by (1−αi). More precisely, we show that
the net outgoing flow assigned to a node v by f∗i+1 is (1−αi)(s(v)−d(v)).
Obviously, this holds for f∗1 . Now, we assume that it holds for i, and show

8In practice, we do not have to actually assign values to unused flows, which would of
course require an exponential number of steps.
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that it then has to hold for i+ 1 as well. For each v ∈ V , we have∑
(v,w)∈E

f∗i+1(v, w)−
∑

(u,v)∈E

f∗i+1(u, v) (49)

=
∑

(v,w)∈E

(f∗i (v, w)− αfifi(v, w))−
∑

(u,v)∈E

(f∗i (u, v)− αfifi(u, v)) (50)

=
∑

(v,w)∈E

f∗i (v, w)−
∑

(u,v)∈E

f∗i (u, v)

− αfi

 ∑
(v,w)∈E

fi(v, w)−
∑

(u,v)∈E

fi(u, v)

 (51)

=(1− αi−1)(s(v)− d(v))− αfi(s(v)− d(v)) (52)

=(1− αi)(s(v)− d(v)) . (53)

Since f∗i is a feasible flow (with scaled down supply and demand values),
there is a path to a source from every sink and a path to a sink from every
source that only consist of edges on which there is a positive amount of
flow. Consequently, Step 3 can be executed in each iteration.

Second, in every iteration, the flow decreases to zero on at least one edge
(edges for which f∗i (e)/fi(e) is minimal). Thus, the algorithm terminates
after at most E iterations. Furthermore, as each step runs in polynomial
time, the whole algorithm runs in polynomial time as well.

Third, after the algorithm has terminated,
∑
f∈T αf = 1 as the net outgo-

ing flow of any source v is s(v)− d(v) before the first iteration, 0 after the
last iteration, and it is decreased by αfi(s(v)− d(v)) in each iteration i.

Finally, we have ∑
f∈T

αff(e) =
∑
i

αfifi(e) = f∗(e) . (54)
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E Link Propagation Delays of the Abilene and
ISP3 Networks

Table 5: Link Propagation Delays (ms) of Each Network (20 Largest Values)

Abilene ISP3

0.032 0.016 0.075 0.014

0.032 0.016 0.033 0.014

0.026 0.011 0.033 0.012

0.026 0.011 0.033 0.012

0.025 0.011 0.033 0.012

0.025 0.011 0.025 0.012

0.02 0.009 0.025 0.01

0.02 0.009 0.023 0.01

0.02 0.008 0.022 0.008

0.02 0.008 0.022 0.008

0.017 0.004 0.022 0.008

0.017 0.004 0.021 0.008

0.016 0.004 0.021 0.007

0.016 0.004 0.019 0.007
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