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Abstract

The offline pickup and delivery problem with time windows
(PDPTW) is a classical combinatorial optimization problem
in the transportation community, which has proven to be very
challenging computationally. Due to the complexity of the
problem, practical problem instances can be solved only via
heuristics, which trade-off solution quality for computational
tractability. Among the various heuristics, a common strategy
is problem decomposition, that is, the reduction of a large-
scale problem into a collection of smaller sub-problems, with
spatial and temporal decompositions being two natural ap-
proaches. While spatial decomposition has been successful in
certain settings, effective temporal decomposition has been
challenging due to the difficulty of stitching together the
sub-problem solutions across the decomposition boundaries.
In this work, we introduce a novel temporal decomposition
scheme for solving a class of PDPTWs that have narrow time
windows, for which it is able to provide both fast and high-
quality solutions. We utilize techniques that have been popu-
larized recently in the context of online dial-a-ride problems
along with the general idea of rolling horizon optimization.
To the best of our knowledge, this is the first attempt to solve
offline PDPTWs using such an approach. To show the perfor-
mance and scalability of our framework, we use the optimiza-
tion of paratransit services as a motivating example. Due to
the lack of benchmark solvers similar to ours (i.e., temporal
decomposition with an online solver), we compare our results
with an offline heuristic algorithm using Google OR-Tools. In
smaller problem instances (with an average of 129 requests
per instance), the baseline approach is as competitive as our
framework. However, in larger problem instances (approxi-
mately 2,500 requests per instance), our framework is more
scalable and can provide good solutions to problem instances
of varying degrees of difficulty, while the baseline algorithm
often fails to find a feasible solution within comparable com-
pute times.

1 Introduction
The pickup and delivery problem with time windows
(PDPTW) is a challenging optimization problem (De-
saulniers, Madsen, and Ropke 2014). The PDPTW is a gen-
eralization of the vehicle routing problem with time win-
dows (VRPTW) in which requests include both pickup and
delivery time windows (Dumas, Desrosiers, and Soumis
1991). Furthermore, the PDPTW problem can be catego-
rized as offline or online. In the offline setting, trip requests

are gathered ahead of time and vehicle routes are optimized
in advance for the day. In the online setting, requests are
scheduled in real time as they arrive. In this work, we fo-
cus on the offline problem. Due to computational challenges,
current state-of-the-art is focused on heuristic approaches,
which often compromise solution quality for scalability (De-
saulniers, Madsen, and Ropke 2014). Previous research, mo-
tivated by real-world applications, has addressed various
practical considerations, such as utilizing multiple depots
and vehicles, enforcing strict time windows, allowing selec-
tive visits to customers, or optimizing multiple objectives at
once (Ho et al. 2018; Ropke, Cordeau, and Laporte 2007).
These approaches aim to address specific cases of the offline
PDPTW and therefore often lack flexibility.

For solving the VRPTW, decomposition is a common
strategy—dividing the original large-scale problem into a
number of smaller sub-problems with respect to time or
space. In spatial decomposition, requests are clustered by
location. Then, decomposed problems are solved indepen-
dently and solutions are merged together. There is significant
literature on spatial decomposition based on the cluster-first
and route-second principle (Ouyang 2007; Desaulniers et al.
2002). In temporal decomposition, the time axis is split into
multiple time intervals, and the original problem is strictly
divided into small problems corresponding to these inter-
vals. While some papers incorporate temporal information
on top of a spatial decomposition (Bent and Van Hentenryck
2010; Qietal. 2012; Tu et al. 2015), we are not aware of suc-
cessful approaches with pure temporal decomposition tech-
nique. Hence, we introduce a novel temporal decomposition.
Naive spatial or temporal decomposition can significantly
degrade the solution as routes are isolated to individual spa-
tial partitions or time bins. Also, it is non-trivial to stitch
routes together that are independently obtained for each time
interval in a post processing step (Zheng and Zhang 2019).
Our temporal decomposition overcomes this issue by cre-
ating overlapping time bins and solving the problem via a
rolling horizon approach. We note that a similar approach
with spatial decomposition is much harder in pickup and de-
livery problems as each request is defined spatially in a four
dimensional space (the product of two dimensional coordi-
nates for the origin and destination nodes), while decompos-
ing time only involves a single dimension.
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. . Vehicle Time Ride Route Selective .o Static
Depots  Trips  Vehicles  Fleet capacity ~windows time duration  visits Obj. /Dyn.’

(Masmoudi et al. 2018) S S M HE v v v S Static
(Sayarshad and Gao S M M HO v v M Dyn.
2018)
(Tellez et al. 2018) M S M HE v v v S Static
(Luo, Liu, and Lim S M M HE v v v v M Static
2019)
(Bongiovanni, Kaspi, M M M HE v v v v S Static
and Geroliminis 2019)
(Liang et al. 2020) M S M HO v v v v v S Dyn.
(Malheiros et al. 2021) M S M HE v v v v S Static
(Rist and Forbes 2021) S S M HO v v v v S Static
Ours M M M HE v v v v v M Dyn.

Table 1: Recent literature for PDPTW variants in large scale network (published after 2018)
@ Abbreviation for objective, ° Abbreviation for dynamic, S is an abbreviation for single, M is an abbreviation for multiple, HE is an

abbreviation for heterogeneous, HO is an abbreviation for homogeneous.

We consider a different approach for temporal decompo-
sition based on rolling horizon optimization, where instead
of dividing the problem into non-overlapping time intervals
we iteratively solve the problem over a sequence of over-
lapping intervals. More precisely, we pick a time window
size Ty, and a step size t,, and create a sequence of sub-
problems corresponding to time windows {(0,Ty,), (ts,ts +
Tw), (2ts,2ts + Ty),...}. This approach eliminates the
problem of boundary stitching and achieves smooth tempo-
ral transitions since part of the solution from one time in-
terval can be updated in the next iteration. The time win-
dow (T,) and step size (t,) are hyperparameters that con-
trol the desired trade-off between computational efficiency
and solution quality. This approach for temporal decomposi-
tion is also flexible enough to incorporate practical problem
considerations, since adding complexity to a smaller prob-
lem instance (i.e., the sub-problem) is more computationally
tractable than doing so with the full problem instance.

The drawback of this approach is the need to solve a large
number of sub-problems (7'/ts instead of T'/T,,) of size
T,,. Thus, obtaining fast computation times requires a fast
PDPTW solver. This leads us to consider recent approaches
utilized in the online PDPTW literature and in particular
an approach that works extremely well when the time win-
dows are narrow (Alonso-Mora et al. 2017), which is a com-
mon characteristic in many passenger centric applications.
To the best of our knowledge, this is the first attempt to de-
ploy an online algorithm in conjunction with rolling horizon
optimization for solving an offline PDPTW. We empirically
show the performance and scalability of the rolling horizon
framework through experiments.

The remainder of this article is structured as follows. In
Section 2, we review variants of PDPTW and their prac-
tical considerations, and heuristics that have been devel-
oped for PDPTW. In Section 3, we explain the mathematical
definition of the rolling horizon framework and the online
solver that it is built upon. In Sections 4-5, we show the
performance and scalability of our framework through ex-
periments on paratransit scheduling problems utilizing two

sources of data. Finally, in Section 6, we provide concluding
remarks and discuss possible future directions.

2 Literature Review
2.1 PDPTW Variants for Real-World Application

Ropke, Cordeau, and Laporte (2007) provide a comprehen-
sive survey of PDPTW solvers developed up to 2007. Ho
et al. (2018) conducted a comprehensive literature review
for PDPTW variants published from 2007 to 2018 (see Ta-
ble 5-8 in their paper (Ho et al. 2018)) and we provide an
extended table for papers published after 2018 in Table 1.
Columns are all the typical features that have been consid-
ered in PDPTW variants, and a more detailed explanation
of the features is explained in online appendix (Kim et al.
2022).

Ho et al. (2018) pointed out the research gaps and encour-
aged the development of techniques that can be adapted to
solve the many variants of the PDPTW. Our approach can or
can be easily modified to consider all the typical features of
the PDPTW variants shown in Table 1. For example, even
though it is outside the scope of this work, our approach can
be easily adapted to handle dynamic updates of an existing
solution in real time. While reviewing papers published after
2018, we could not find any approaches that can efficiently
accommodate as many practical considerations as our ap-
proach.

The flexibility of our framework stems from two types of
decompositions. First, the online VRP algorithm (Alonso-
Mora et al. 2017) that our approach is built upon decom-
poses the high-capacity vehicle-passenger matching prob-
lem into a routing problem and an assignment problem, and
develops heuristics for effectively computing feasible routes
when time windows are relatively tight. Second, the tempo-
ral decomposition allows for dividing the original problem
into a sequence of more tractable sub-problems. The compu-
tational gains achieved via these decompositions allow for
solving more complex problem variants.
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2.2 Solution Methods for PDPTW

Previous literature has proposed different solution ap-
proaches to solve PDPTW and its variants. The vast ma-
jority of exact algorithms are developed using techniques
such as branch-and-cut (Cordeau 2006; Ropke, Cordeau,
and Laporte 2007), branch-and-price (Garaix et al. 2010),
and branch-and-price-and-cut (Qu and Bard 2015). Exact
methods are unable to solve large instances within a rea-
sonable time due to the intrinsic hardness of PDPTWs.
(Ropke and Cordeau 2009) obtained the exact solution up
to 500 customers in some benchmark instances, but many of
the benchmark instances remain unsolved in optimality (Ho
et al. 2018). Furthermore, the largest solvable instance size
gets smaller for more complex variants of the problem.

Spatial and temporal decomposition is one common strat-
egy to tackle large scale problems. Bent and Van Hentenryck
(2010) suggested an iterative and adaptive decomposition
scheme that defines sub-problems based on the spatiotem-
poral features of the existing solution, solves them indepen-
dently, and inserts them into the existing solution. Qi et al.
(2012) decided sub-problems using a clustering method
based on spatiotemporal distance, and merged them after
solving independently. Tu et al. (2015) defined a spatial-
temporal distance and used it to speed up a local search
heuristic. However, all of these techniques explicitly depend
on the problem being a VRPTW, and cannot be applied to
situations involving pickup and delivery.

While there are no attempts to introduce temporal decom-
position in PDPTW, various heuristics and metaheuristics
have been developed for solving real-world scale instances.
These methods include insertion based heuristics (Luo and
Schonfeld 2007; Hame 2011), tabu search (Kirchler and
Calvo 2013; Detti, Papalini, and de Lara 2017), simulated
annealing (Braekers, Caris, and Janssens 2014), variable
neighborhood search (Parragh, Doerner, and Hartl 2010),
large neighborhood search (Ropke and Pisinger 2006), and
genetic algorithms (Jorgensen, Larsen, and Bergvinsdottir
2007). In general, it is hard to compare performance among
these algorithms due to the lack of uniformity in the spe-
cific problem variants they consider and the use of different
benchmark instances of different sizes.

3 Methodology
3.1 Problem Input and Output

We assume a set of vehicles V = {v1,...,v,,} with a
fixed vehicle-specific capacity and a set of requests R =
{r1,...,rn}, where each request 7 contains a pickup and

drop-off locations, and desired pickup time #““”. We calcu-

late £’ the earliest possible drop-off time, by adding the
estimated travel time between pickup and drop-off locations
to the desired pickup time. Each problem instance is also de-
fined by the following set of parameters: maximum allowed
delay time D,,, and waiting time W,,,, of customers. The
time horizon of the problem t,,,, is divided into smaller
intervals with length T,,, which we refer to as the sliding
window size. The rolling horizon optimization also defines
a step size ts, which in our approach is equal to the batch

size of the online optimization algorithm (see below). Cor-
respondingly, we pick a sliding window size that is a multi-
ple of the batch size, which we can interpret as a look-ahead
window from the point of view of the online optimization
problem. Selecting an appropriate step size and sliding win-
dow size is part of our investigation. The output of the model
is a set of vehicle routes R = {Ri, Ra,..., R,,}, where
each route is an ordered set of pickup and drop-off loca-
tions and estimated time to visit. We obtain vehicle routes
that maximize service rate while minimizing vehicle miles
traveled as a secondary objective.

3.2 Computational Approach

In the rolling horizon framework, sub-problems are solved
in sequential order along the time axis, with the solution
to each sub-problem determining the best passenger-vehicle
matching for the corresponding time interval. The solution
of the first ¢, minutes is fixed, but the remainder (7, — t5)
can be reoptimized in the next iteration. We use the term
batch to refer to the set of requests belonging to a given
sub-problem, i.e, the requests whose desired pickup time
is within the sliding window corresponding to that sub-
problem. The process for selecting the requests correspond-
ing to each batch is called window processing, which is il-
lustrated in Figure 1. The online approach with T,, = ¢, is
a myopic strategy because each batch only includes requests
that have already entered the system. In contrast, our rolling
horizon framework can consider batches that extended into
the future (known exactly in our case because this is an of-
fline problem and all the demands are known). After solv-
ing the optimization problem for a given sub-problem, the
routing schedule is finalized for all the requests that will not
appear in the next sub-problem. In the next sub-problem, we
solve another optimization problem with a new time interval
which is shifted forward one step (i.e., by ;).

3.3 Problem Formulation and Algorithm

The entire algorithm follows an iterative process. In each
sub-problem, an optimization problem considers an active

request set R (CR). New requests obtained from the win-
dow processing are added to the active requests set. Requests
that have been picked up by any vehicle are removed from
the active request set at the end of each iteration. To track re-
quests that have already been picked up, we maintain the set
‘P« which is the set of passengers that have boarded onto
vehicle v € V prior to time £. Then, we solve the matching

problem (RTV-ILP) between the active request set R and the
vehicle set V. As a result, we obtain the order and the sched-
uled time to pickup and drop-off customers for each vehicle.
Then, the discrete event vehicle simulator receives the vehi-
cle location from the prior sub-problem, executes scheduled
routes from the optimizer until the current simulation time,
updates travel times, and then finalizes the vehicle locations
for the next sub-problem. From the vehicle simulation, we
get a set of vehicle routes until the current time. The final-
ized routes in the current iteration cannot be changed in the
later iterations. We describe the process in more detail in the
following sections. Pseudo code for the entire algorithm and
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Figure 1: Window processing in (a) online (b) rolling horizon framework (when sliding window size is 3At and step size is At)

window processing is provided in the online appendix (Kim
et al. 2022).

Window processing. The procedure for selecting a set of
requests to be considered based on their desired pickup time,
R. As discussed earlier, the sliding window size T}, and step
size t, are part of the investigation. In general, increased
sliding window size leads the better solution quality but ex-
ponentially increases computational time. Step size ¢ can be
the overlapped window size (T, — ts), which will also in-
crease solution quality. Decreasing the step size linearly in-
creases computational time as we need to solve around 7'/t
sub-problems.

RTV-ILP. The integer linear program (ILP) for assigning
requests to trips and trips to vehicles. The RTV-ILP frame-
work can solve fairly large problem instances, which accom-
modates larger sub-problems in the temporal decomposition.
The illustration of the RT-V structure can be found in the on-
line appendix (Kim et al. 2022). We refer readers to (Alonso-
Mora et al. 2017) for more detail. Requests R are aggre-
gated into trips 7 based on service constraints. The RT-V
graph contains all feasible trip-vehicle pairings, E7y. The
existence of an edge between a trip 7; € T and a vehicle
v; € V indicates that it is feasible for vehicle j to serve trip
1. The feasibility of a trip is determined by whether all the
requests that belong to the trip can be served by a vehicle
while satisfying the constraints in Equations 1 and 2. The
constraints ensure that i) the waiting time is not greater than
the maximum waiting time W, and ii) the delay time is
not greater than the maximum delay time D,,,,. Recall that

tP" denotes the actual pickup time and #;"**” denotes the

dropoff

desired pickup time. Also, ¢}’ denotes the actual dropoff

time and #"7% denotes the earliest possible dropoff time.
ickup _ pick
t[]:c up t[];w up < W vk (1
"7 — """ < Dy, Yk @

Note that in the case of high-capacity vehicles, enumerating
all possible combinations of pickups and deliveries is still
computationally expensive. Therefore, we use an insertion-
based heuristic when dealing with more than 4 passengers
(Alonso-Mora et al. 2017; Wilbur et al. 2022). This process
can be further improved with heuristics that appropriately
trade-off speed and accuracy.

After building the RT-V graph, we need to solve an ILP to
obtain the optimal matching.

argmin Z Cij€ij + Z Ck Xk 3)
€ij Xk {ij:eijGETv} EER
S.t. Z €ij <1 ,V’Uj ey 4

{i:T; €T}

> aitxe=1 ¥ €R (5)

{e:T;€T} {j:V;€V}

Decision variables ¢€;; and X}, are binary. If vehicle j is as-
signed to trip T}, €;; = 1; otherwise, ¢;; = 0. If the request
7, cannot be served by any vehicle, x; = 1; otherwise,
Xt = 0. In the objective function, there is cost ¢;; which
is the total vehicle miles traveled by vehicle v; when serv-
ing trip 7;. The other cost ¢y, is a large constant to penalize
unserved requests, such that the service rate is maximized.
Thus, the objective function prioritizes maximizing the ser-
vice rate and then minimizing the vehicle miles traveled as
a secondary objective. Equation 4 guarantees that a vehicle
is assigned to at most one trip. Equation 5 imposes that each
request should be either served by a vehicle or ignored.

An RT-V graph is built at each sub-problem and the best
passenger-vehicle matching can be updated until the passen-
ger is picked up or their maximum waiting time is exceeded.
In other words, passengers can be swapped to another vehi-
cle prior to pickup. However, additional constraints enforce
that a previously matched passenger cannot be ignored.

4 Experimental Design

We showcase the performance of our framework using para-
transit scheduling as a motivating application. Paratransit is
a service for passengers who are unable to use fixed-route
transit, which is provided by public transit agencies as man-
dated by the Americans with Disabilities Act. Due to the
large costs associated with operating paratransit services,
transit agencies are constantly looking to improve service
efficiency and provide a high level of service at a lower cost.
Customers book paratransit trips either by phone or via an
app, and can make a reservation as early as two weeks in
advance or within a few days of travel. Customers are given
a confirmation of travel with an estimated pickup and drop-
off time shortly after the booking request. The service is re-
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quired to provide a tight pickup time and drop-off window,
typically around 30 minutes. Additionally, paratransit con-
sists of high capacity vehicles which adds to the computa-
tional complexity of the problem. Some paratransit services
allow customers to request trips in real time, but service is
not guaranteed for these trips. Accordingly, the paratransit
problem is an offline optimization problem because most
service providers require reservations to be made by the end
of the previous day, with a few exceptions allowing reserva-
tions to be placed during the service day.

We obtain data from two different sources for experi-
ments. First, we use paratransit trip requests provided by a
public transit agency. Second, we use New York City taxi
(City 2016) data to investigate the scalability of our ap-
proach with a larger dataset. The parameters that we use for
the experiments can be found in the online appendix (Kim
et al. 2022). We provide two baselines. The first baseline is
a fully online solver while the second baseline is an offline
heuristic solver.

Real-world paratransit data We used 6 months of para-
transit trip requests between January 1, 2021 and June 30,
2021. The data is provided by our partner agency, the Chat-
tanooga Area Regional Transportation Authority (CARTA),
which is a mid-sized public transit agency in the United
States. As this dataset is directly from a transit agency, we
use it to show the performance of our approach on real-
world data. Each trip request contains pickup and dropoff
locations and the requested pickup time. For privacy consid-
erations, the location information is anonymized as follows.
The service area is discretized into a grid of one square mile
tiles. For each request, the service location is shifted to a
random location within the corresponding cell. Thus, all the
demands from a given cell are randomly redistributed within
that cell. The requests are also temporally aggregated by the
agency to 15 minutes. Thus, we set the step size to 15 min-
utes, which is the step size that we can use. We randomly
selected 30 weekdays for the experiments. There were an
average of 172 trip requests per instance in this dataset.

New York City taxi data Recall that a primary advantage
of our approach is its ability to scale to a large number of re-
quests. To test this, we acquired 31 days of taxi trip requests
(January 1, 2016 to January 30, 2016) in New York City
(City 2016). To better represent paratransit trips, we deleted
short-distance trips which are less than 5 km. We randomly
sampled 1% and 20% of the NYC taxi data to generate two
new paratransit datasets. We sampled 1% of the data to have
a similar size of data to the real-world paratransit dataset,
having an average of 129 trips per instance. The 20% dataset
had an average of 2,587 requested trips per instance and was
used to investigate the scalability of our approach. We refer
to the 1% sampled data as Scenario 1 and the 20% sampled
data as Scenario 2. A detailed description of the data statis-
tic is provided in Appendix 7.3. As New York City taxi data
is larger than the paratransit data, we set the step size to 5
minutes.

4.1 Metrics

For each day, we calculate three metrics to evaluate the per-
formance of our approach compared to the baselines. Ser-
vice rate is the number of requests served divided by the total
number of requests in a day. The compute time per request is
the total time the solver takes to run for a day divided by the
number of requests on that day. The average delay time is
the average time difference between the actual dropoff time
and the earliest possible dropoff time that is calculated by
adding the shortest travel time to the requested pickup time.

4.2 Baselines

Our approach provides an efficient, tune-able approach that
provides a better trade-off between computational efficiency
and solution quality. To investigate this trade-off, we im-
plement a fully online, myopic solution and a fully offline
heuristic solver.

Online Solver We use our own approach with a sliding
window size T, to be equal to the step size ¢, to repre-
sent the online solver. By having an overlapped window size
(T, — ts) of zero, our solver is simplified to a purely online
approach as it does not utilize future knowledge. We refer
to this baseline as RHO comparing with our approach RH1,
RH2, RH3, which have overlapped windows whose size is a
multiple of step size of 1, 2, and 3, respectively.

Offline Solver We implemented an offline PDPTW
benchmark solver in Google OR-Tools, a well established,
modern, and publicly available VRP solver developed by
Google (Perron and Furnon 2022). We use guided local
search (GLS) which is known as the best performing set-
ting for the OR-Tools PDPTW solver as the baseline heuris-
tic. The general GLS approach was first proposed by Kilby,
Prosser, and Shaw (1999) as an efficient anytime heuristic,
that aims to iteratively improve the solution for a fixed set
of time. GLS requires an initial solution to improve upon.
To find the initial solution we used a parallelized cheapest
insertion approach which iteratively builds a solution by in-
serting the cheapest node at its cheapest position without vi-
olating the PDPTW constraints; cost is defined by the ob-
jective function (Perron and Furnon 2022). We optimize for
service rate by setting a sufficiently large penalty for trips
that are not serviced. The secondary objective is to minimize
passenger travel time. The baseline includes constraints on
pickups and dropoffs, as well as time windows (as in our
approach).

In addition, in the online appendix (Kim et al. 2022)
we also compare our algorithm with the LKH-3 solver that
uses a modified Lin-Kernighan-Helsgaun heuristic. This is
a state-of-the-art solver for constrained traveling salesman
and vehicle routing problems.

4.3 Reproducibility

All the codes and datasets we used for experiments are avail-
able online. Software code for the rolling horizon frame-
work is available in the following repository: https://github.
com/MAS-Research/RollingHorizon.git. Code for the base-
line offline heuristic using Google OR-Tools is avail-
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able in the following: https://github.com/MAS-Research/
RollingHorizon_baseline_ORTools.

5 Results

5.1 Evaluation on Real-World Paratransit
Dataset

Figure 2 provides service rates for the 31 day experiment.
Overall, our framework (RH1, RH2, RH3) outperforms the
online approach (RHO). In an experiment with 6 fleets, RH3
brings an increase in service rate from 77.7% to 85.6% com-
pared to RHO, which corresponds to a 10.1% increase. We
observe that the improvement of the service rate reduces as
the sliding window size increases. This is because future in-
formation has a more significant impact on current decisions
when the events are imminent. However, computational time
exponentially increases as we increase the sliding window
size (The result can be found in the online appendix (Kim
et al. 2022).). In practice, operators can decide the appropri-
ate sliding window size and step size to trade off service rate
and compute time.

o RHO © RHI RH2 RH3
o GLSO0.I o GLS0.2 = GLS0.3 ~ GLS0.4
100% |- x WO R
X X <
& o é g X
8 50%
g so%| &
8
)
0% | . 2
3 4 5 6

Number of Vehicles

Figure 2: Service rate, Chattanooga paratransit dataset

5.2 Evaluation of NYC Datasets

In Figure 3, the left column shows the results of scenario 1
(with an average of 129 requests per instance) and the right
column shows the results of scenario 2 (with an average of
2,587 requests per instance). In scenario 1, the performance
of the rolling horizon framework is as good as that of GLS.
Recall that GLS is an anytime algorithm from which we ob-
tain the best among the solutions that have been found within
a time limit. We obtain the best solution of GLS after the
given time limit of 0.1, 0.2, 0.3, and 0.4 seconds per request.
GLS fails to find a feasible solution in some instances with
0.1, 0.2 seconds time limit, and starts to provide results to
all instances with 0.3 seconds time limit. More specifically,
with a 0.1 second time limit, GLS cannot get a feasible so-
lution in 25, 22, 21, 20 instances among 31 instances with 3,
4, 5, 6 vehicles, respectively. With a 0.2 second time limit,
GLS cannot get a feasible solution in 4, 1, 1 instances among
31 instances with 3, 4, 5 vehicles, respectively.

In our framework, the mean of service rates increases as
the sliding window size increases (RHO, RH2, RH4, RH6, in
that order), and it has a saturation point in all experiment set-
tings with varying fleet sizes. The rolling horizon approach
achieves saturation points when the time limit becomes 0.3
seconds per request, which is the time limit that GLS starts
performing well. The saturated service rates are close to or
even exceed the service rates of GLS. This indicates that
the rolling horizon framework obtains good enough solution
quality which is comparable to that of GLS within similar
compute times. Also, the average delay time from the rolling
horizon framework is smaller than that of GLS, which would
lead to better user experiences.

Scenario 2 highlights the scalability of our framework.
Recall that the number of requests in scenario 2 is 20 times
larger than that of scenario 1. Our framework achieves rea-
sonable service levels and average delay times. Compare to
RHO which shows 75.6% of the average service rate and
98.4% of the maximum service rate, RH2 shows improve-
ment with 79.0% of the average service rate and 100% of the
maximum service rate. Even RH2 whose compute times are
the largest in our framework can solve any instance within
1 second per request. On the contrary, GLS cannot get any
feasible solution in 29 among 31 instances within the time
limit of 1 and 3 seconds per request. In a time limit of 5
seconds per request, GLS performs better but still cannot
get any feasible solution in 16 instances. The time limit of
5 seconds per request corresponds to around 3.5 hours time
limit for the entire instance, which is already quite long con-
sidering that operators need to obtain a schedule for the next
day within a couple of hours.

6 Conclusions

The pickup and delivery problem with time windows
(PDPTW) is a challenging operational problem, and sev-
eral generalizations based on practical considerations make
the problem even more complicated. In this paper, we in-
troduce a new temporal decomposition scheme to solve the
PDPTW at scale. Our approach uses a state-of-the-art on-
line algorithm within a rolling horizon framework to solve
a sequence of smaller sub-problems that collectively cover
the entire original problem. This strategy avoids the primary
pitfall of more naive temporal decompositions, namely the
challenge of stitching together sub-problems. The computa-
tional gains made through this decomposition provide us the
flexibility to add additional features (corresponding to prac-
tical needs) even though this introduces extra complexity.
We choose the paratransit scheduling problem to show-
case the performance of our rolling horizon framework in
different scales of networks with different demand profiles.
In the real-world size instances, the rolling horizon frame-
work achieves as high service rates as the benchmark offline
solver within comparable computational times. Moreover,
our framework can be scaled up to around 2,500 requests
while the benchmark solver often fails to find any feasible
solution within the 5 seconds time limit per request. Due
to its computational efficiency, our approach can be used to
continuously add new requests to the system after a service
plan is made, giving paratransit operators more flexibility in
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Figure 3: Comparison of the rolling horizon framework with the baseline approach. RHX denotes the rolling horizon solutions
with X indicating the rolling horizon factor. GLSY denotes the guided local search solutions with the Y indicating time limit.

adding last minute requests. Our framework can be also used
to obtain a reasonably good initial feasible solution quickly,
making it a good candidate to be combined with other local

search heuristics that can subsequently improve the solution
as time permits.
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7 Appendix

7.1 A List of Practical Considerations

—

. Multi vehicle utilizing multiple fleets.
2. Multi depots multiple starting and ending locations for
the vehicle fleet.
3. Multi trips allowing a vehicle to return to a depot multiple
times in a single day.
4. Heterogeneous fleet various combinations of equipment
for different types of passengers.
5. Vehicle capacity limiting the maximum number of pas-
sengers.
6. Time window user-specified earliest and latest time
bound for pick-up and drop-off.!
7. Ride time limiting the maximum time difference between
the scheduled pickup and dropoff time.
8. Route duration limiting the maximum time difference be-
tween the times of leaving from and returning to a depot.
9. Selective service allowing selective pickups and deciding
which requests to accommodate.
10. Multiple objectives objective functions consisting of
multiple measures.
11. Dynamic allowing dynamic modification of existing
plans in response to new information.

7.2 RT-V Graph

RT v

Ty = {1y, 1y}e

Ty = {ry, 13}

T3 = {ry, ma}e v
Ty = {ry}e
Ts = {rs}* v,
Te = {ry}e
T; = {r1}e
Tg = {0}

Figure 4: RT-V graph for an example instance (reconstructed
from the schematic figure in Alonso-Mora et al.’s work)

Figure 4 illustrates the structure of RT-V graph. Requests
rr € R are aggregated into trips 7 if it is feasible to serve
those requests by one vehicle, in other words, if those re-
quests are shareable. Edges £y between a trip T; € 7 and
a vehicle v; € V represent all possible candidate pairs be-
tween trip and vehicle meaning that it is feasible for the ve-
hicle to serve all requests in the trip 7;.

! Although our framework does not explicitly have the concept
of the time window, inputs of our model can translate to time win-
dows. Desired pickup time/earliest drop-off time corresponds to the
start of the time window. Then, the end of the time window can be
set by adding the maximum waiting time/detour time. The defini-
tion of the inputs can be found in Section 3.1.

7.3 Data Statistics

An overview of the two datasets is provided in Table 2. The
real-world paratransit dataset contains 30 instances. Each in-
stance represents different operation days. There are an av-
erage of 172 requests per instance with a standard deviation
of 33. NYC taxi data contains 31 instances. Scenario 1 con-
tains 129 requests per instance with a standard deviation of
29. Scenario 2 contains 2587 requests per instance with a
standard deviation of 570.

Table 2: Overview of Datasets

Real-world NYC NYC
Dataset Scenario 1 | Scenario 2
Number of Days 30 31 31
Mean Request 172 129 2587
per instance
Std.'DeV. Requests 33 29 570
per 1nstance

7.4 System Parameters

We identified parameter settings based on discussions with
the public transit agency, which are shown in Table 3. The
number of vehicles varies from 3 to 7 and each vehicle can
accommodate up to 8 passengers at a time. Maximum wait-
ing time is defined as the time difference between the actual
pickup time and the desired pickup time which is set to 30
minutes. The maximum delay time is defined as the time
difference between the actual dropoff time and the earliest
possible dropoff time and is also set to 30 minutes. In prac-
tice, our partner agency set the same goal for the service
levels. On average, our partner agency plans for 5-10 min-
utes to load/unload a passenger, thus we conservatively set
the dwell time to 10 minutes. We set the step size to 15 min-
utes, which is the minimum interval that we can use because
time information in the original data was aggregated by 15
minutes.

Table 3: Parameter settings for real-world paratransit dataset

Parameter Values
Fleet size 3,4,5,6,7
Vehicle capacity 8

Maximum waiting time | 30 (min)

Maximum delay time 30 (min)
Dwell time 10 (min)
Step size 15 (min)

The parameter settings for the NYC taxi investigation are
provided in Table 4. For scenario 1 we vary the fleet size
from 3 to 6 vehicles while for scenario 2 we investigate fleet
sizes of 30, 40, 50, and 60. The vehicle capacity is again set
to 8. Due to the higher frequency of trip requests, we set the
step size to 5 minutes instead of the 15 minutes interval so as
to deal with the NYC data which is larger than the previous
dataset. Likewise, we can make step sizes even smaller to
deal with larger demand. One caveat is that the decreasing
length of the interval may lead decisions in each batch to
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become more myopic and deteriorate the solution quality as

we utilize restricted information.

Table 4: Parameter settings for New York City dataset

Parameter Scenario 1 Scenario 2
Data 1% sampled | 20% sampled
Fleet size (M) | 3,4,5,6 30, 40, 50, 60
Step size 5 (min) 5 (min)

RH factor 0,1,2,3 0,1,2,3

7.5 Results of Chattanooga Paratransit Dataset
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Overall, the trend of the results from the Chattanooga
paratransit dataset shows the same as the results from New
York City taxi dataset.

7.6 Pseudo Code

Algorithm 1 shows the overview of our offline PDPTW al-
gorithm. Starting from the initial simulation time, we itera-

tively call the functions WindowProcessing, RTV-ILP, and
SimulateVehicle until the end of the simulation time.

Algorithm 1: OfflineScheduling(R, V)
t<+0
R+ 0
while ¢ < ¢,,,4, do
R + R U WindowProcessing|(t)
Assignments < RTV-ILP(R, V)
Poey i, Ry < SimulateVehicle(Assignments, t)
forv e Vdo
‘ 7?, — 7% \Pv,t
end
t—t+ At

end
Result: R

Algorithm 2 shows a pseudo code for window process-
ing. Rolling horizon factor ¢/*# is introduced to select an
eligible set of requests R. The procedure for selecting a set
of requests to be considered based on their desired pickup
time PickupTime(r). The window processing makes R to
contain requests within the sliding window size Ty, .

Algorithm 2: WindowProcessing(t)
R+ 0
if t == 0 then
for r, € Rdo
if PickupTime(r),) < cf'H x t, then
| R+« RU{ry}
end
end

end
else
for r, € Rdo
if PickupTime(ry,) < (t + cBH x ty)
APickupTime(ry) > (t + cFH — 1) x t,
then
| R+ RU{ry}
end
end

end
Result: R

7.7 Comparison to LKH3

We compare our solver to an extension of Lin-Kernighan-
Helsgaun (LKH3). LKH3 is the state-of-the-art solver to
solve TSP and its variants. Among 222 PDPTW bench-
mark instances, only 3 are less than the best-known so-
Iution (BKS), 180 are equal to BKS, and 139 are better
than BKS. For more details, readers are encouraged to visit
http://webhotel4.ruc.dk/~keld/research/LKH-3/.

The benchmark instances are artificially generated for
PDPTW having varying lengths of time windows and ser-
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Instance LKH3 Rolling horizon Framework Gap (%)
VMT® | Compute time® Compute time® Service rate (%) VMT*
Ty=5|Ty,=10|Ty=5|Ty,=10|Ty,=5|1T, =10

Ic101 997 12.05 0.42 0.44 100 100 1095 1127 13.00
Ic105 1011 15.92 0.50 0.50 98 100 1116 1140 12.73
1c106 1032 22.81 0.49 0.50 100 100 1172 1163 12.69
1c107 1021 18.51 0.49 0.60 98.03 100 1165 1085 6.23
Ic108 1030 18.81 0.50 0.52 96.15 100 1209 1120 8.74
1c201 1779 50.85 0.39 0.40 100 100 1981 2021 13.57

Table 5: Comparison of LKH3 and Rolling Horizon Framework (%5 is set to 5 min; 7, is set to 5 and 10 min).
@ Abbreviation for vehicle miles traveled; ®The unit of the compute time is second.

vice times, which may not be the case in the dial-a-ride prob-
lem. We modified the PDPTW instances to better represent
our problem setting. The entire time horizon varies in differ-
ent instances and has no unit. We find a time window that
corresponds to 30 minutes when we consider the entire hori-
zon as 12 hours. Dwell time for pick up and drop off cus-
tomers is also set to the value corresponding to 5 minutes in
12 hours. In order to have a fair comparison, we selected six
adjusted instances (Ic 101, 105, 106, 107, 108, and 201) that
LKH3 can find routes to serve all customers without violat-
ing any demand and time window constraint.

Unlike our solver imposing hard constraints for demands
and time windows, LKH3 has soft constraints. LKH3 de-
fines a penalty to measure how much the constraints are vi-
olated. The primary objective is to minimize the penalty and
the secondary objective is to minimize cost, so if a solution
route has a positive penalty, it means the solver could not
find such a route that does not violate any constraint. For
the instances that LKH3 shows a 100% service rate with a
positive value of penalty, our solver drops some customers
because of infeasibility. For those instances, a fair compar-
ison between our solver and LKH3 is hard. Hence, we will
focus on the solutions with no penalty.

Table 5 compares the performance of our framework to
LKH3. The total vehicle miles traveled (VMT) and compu-
tation time are used as metrics. The VMT of the rolling hori-
zon framework is higher than the VMT of LKH3 with the
optimality gaps varying from 6.23% to 13.57%. However,
the rolling horizon framework is much faster than LKH3.
While LKH3 takes 12.05 sec to 50.85 sec, the rolling hori-
zon framework takes less than 0.6 seconds for all instances.
In other words, the rolling horizon framework is around 20
to 80 times faster than the benchmark solver.




