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Abstract.	One	of	the	most	fundamental	tasks	for	an	AICA	agent	will	be	to	manipulate	information	
that	an	adversary	can	observe,	either	about	a	network	or	the	AICA	agent	itself.	This	includes	taking	
actions	to	conceal	or	camouflage	the	agent	or	specific	network	assets	and	taking	actions	to	deceive	
or	otherwise	affect	the	beliefs	of	an	adversary	conducting	reconnaissance	activities.	In	this	chapter	
we	provide	an	overview	of	tactics	that	have	been	proposed	in	the	literature	for	implementing	cyber	
camouflage	and	deception	actions,	as	well	as	some	foundational	models	in	AI	from	game	theory	and	
machine	learning	that	have	been	used	to	deploy	these	tactics	strategically.	We	go	into	detail	on	three	
particular	models;	the	first	uses	game	theory	to	optimize	the	use	of	decoys	or	modified	signals,	the	
second	uses	game	theory	to	consider	the	modification	of	features	for	both	real	and	fake	objects	to	
confuse	attackers,	and	the	third	applies	machine	learning	methods	to	scale	up	feature	modifications	
to	create	more	effective	deceptive	objects	at	scale.	All	of	these	models	can	be	customized	to	different	
types	of	strategic	questions	around	effectively	deploying	camouflage	to	affect	an	adversary,	and	they	
serve	as	a	starting	point	for	implementing	autonomous	strategies	that	use	camouflage	tactics.	We	
end	by	discussing	some	of	the	different	ways	that	camouflage	and	deception	have	been	evaluated	
so	far	in	the	literature,	noting	that	more	work	is	needed	to	assess	AICA	agents	using	these	strategies	
in	realistic	environments.	

1	 Introduction	

From	 the	 earliest	 history	 of	 conflict,	 stealth	 and	 deception	 tactics	 have	 been	 a	 critical	way	 to	 gain	
strategic	 advantage	 on	 the	 battlefield.	 While	 the	 details	 vary,	 the	 goal	 is	 always	 to	 control	 the	
information	 space,	 preventing	 the	 adversary	 from	 gaining	 useful	 information	 and	 creating	 false	 or	
misleading	beliefs	 in	 some	 cases.	 Camouflage	 is	 one	 example	of	 this;	 it	 has	 a	 long	history	of	 use	 in	
physical	 environments	 as	 a	method	 to	make	 the	 presence	 or	 actions	 of	 an	 entity	 difficult	 to	 detect	
against	 the	backdrop	of	 the	environment.	 In	 cyber	warfare	 the	control	of	 information	 is	even	more	
central,	and	the	ability	to	perform	(or	hinder)	effective	reconnaissance	will	likely	be	decisive	in	many	
engagements.	Therefore,	developing	effective	methods	 for	 implementing	and	strategically	deploying	
camouflage	in	a	cyber	context	is	an	important	research	objective	for	cyber	operations.	

In	 the	 particular	 context	 of	 an	Autonomous	 Intelligent	 Cyber-defense	Agent	 (AICA),	we	 identify	
three	primary	reasons	why	cyber-camouflage	techniques	are	important:	

– An	AICA	may	be	 tasked	with	 implementing	and	deploying	 camouflage	actions	 for	 a	network	or	
individual	host	to	make	reconnaissance	more	difficult	for	the	adversary	

– An	AICA	may	need	to	conceal	its	own	presence	or	actions	from	the	adversary	to	evade	detection	
– An	AICA	may	need	to	detect	and	identify	threats	that	are	using	camouflage	tactics	to	conceal	their	
own	activities,	so	the	agent	would	need	to	be	able	to	mitigate	camouflage	tactics	of	the	opponent	

In	this	chapter	we	present	an	overview	of	some	common	methods	for	 implementing	camouflage	
tactics	in	the	cyber	environment.	We	then	present	some	basic	mathematical	frameworks	based	in	game	
theory	that	have	been	developed	to	model	the	strategic	aspects	of	how	to	use	and	optimize	camouflage	
in	the	cyber	environment.	We	go	into	detail	on	three	particular	models.	The	first	two	use	game	theory	
to	formulate	specific	optimization	problems,	and	the	last	one	shows	how	we	can	extend	these	models	
using	machine	learning	to	implement	more	effective	decoy	objects	(e.g.,	honeypots	or	fake	traffic)	that	
are	difficult	for	adversaries	to	detect.	Finally,	we	review	some	of	the	ways	in	which	camouflage	(and	
more	generally,	deception	methods)	have	been	evaluated	so	far	 in	the	research	literature.	While	we	
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cannot	 cover	 all	 of	 the	 important	 topics	 on	 cyber-camouflage	 here,	 we	 present	 some	 fundamental	
concepts	 and	 models	 that	 can	 be	 adapted	 to	 address	 many	 key	 challenges	 for	 AICA	 and	 provide	
references	for	additional	study.	

2	 Implementing	Camouflage	

The	 goal	 of	 cyber	 camouflage	 is	 to	 take	 actions	 that	make	 the	 presence,	 actions,	 and	 intentions	 of	
systems	or	artificial	agents	more	difficult	for	an	adversary	to	correctly	perceive.	This	can	be	achieved	
using	a	wide	variety	of	specific	techniques	for	manipulating	information	depending	on	the	context	and	
objectives.	We	begin	by	introducing	some	representative	methods	from	the	literature	for	implementing	
camouflage	 at	 a	 technical	 level	 to	 give	 a	 sense	 of	what	 types	 of	 actions	 can	 potentially	 be	 used	 to	
manipulate	 the	 information	 space.	 We	 focus	 our	 discussion	 on	 two	 broad	 categories	 of	 actions:	
obfuscation	(hiding	information)	and	deploying	decoys	(a	form	of	deception).	More	thorough	coverage	
and	discussion	can	be	found	in	related	survey	articles	(e.g.,	Han	et	al.	[2018],	Fraunholz	et	al.	[2018])	

2.1	 Obfuscation	Techniques	

One	of	the	most	basic	goals	for	cyber	camouflage	for	AICA	agents	is	to	conceal	the	presence	of	an	agent	
in	 the	 first	 place,	 or	 to	 conceal	 specific	 actions	 or	 objectives.	 Cyber	 attackers	 use	 a	wide	 variety	 of	
methods	 to	 conceal	 their	 activities,	 such	 as	 stealthy	 scanning,	 obfuscated	 malware,	 obfuscated	
command	and	control	communications,	and	specific	actions	to	cover	the	tracks	of	an	attack.	Many	of	
these	are	also	relevant	for	cyber	defense	to	make	it	more	difficult	for	attackers	to	perform	basic	system	
reconnaissance	as	well	as	to	conceal	the	nature	of	cyber	defenses.	However,	cyber	defense	has	typically	
placed	 less	 emphasis	 on	 effective	 concealment	 and	 obfuscation	 of	 information	 for	 several	 reasons,	
including	potential	impacts	on	legitimate	users,	the	complexity	of	implementing	such	strategies	broadly	
on	a	network,	and	the	desire	not	to	rely	entirely	on	obfuscation	for	security.	However,	as	automated	
agents	for	both	attack	and	defense	become	more	sophisticated,	it	is	both	possible	and	necessary	to	focus	
more	attention	on	defensive	obfuscation	to	gain	advantages	early	in	the	cyber	kill	chain	by	hindering	
attacker	 reconnaissance	 and	planning	 efforts	Hosseinzadeh	 et	 al.	 [2015].	We	now	briefly	 introduce	
some	existing	methods	for	defensive	obfuscation	at	different	levels.	

Network	 Layer:	 Basic	 properties	 of	 the	 network	 topology	 and	 configuration	 can	 be	 obscured	 by	
manipulating	 the	 data	 plane	 in	 various	 ways	 to	 limit	 the	 accuracy	 of	 passive	 and	 active	 network	
scanning	methods.	This	can	include	intercepting	and	modifying	path	tracing	probes	directly	Meier	et	al.	
[2018],	route	obfuscation	utilizing	ranking-based	route	mutation	Bin-Yahya	and	Shen	[2022],	utilizing	
honey	links	and	hiding	important	links	in	a	large	network	Liu	et	al.	[2021],	delaying	identified	probe	
packets	to	hinder	Network	Topology	Inference	Hou	et	al.	[2020],	etc.	New	methods	for	obfuscation	are	
actively	being	developed	that	make	use	of	AI	techniques	such	as	adversarial	machine	learning	to	more	
effectively	obfuscate	the	characteristics	of	network	traffic	Verma	et	al.	[2018],	Datta	et	al.	[2018].	

System	Layer:	Attackers	also	use	fingerprinting	methods	to	identify	specific	software	or	configuration	
details	 for	 individual	 systems,	 such	 as	 operating	 system	 versions.	 Information	 is	 often	 leaked	 by	
protocols	 and	 services,	 but	 information	 can	 be	 either	 redacted	 or	 modified	 to	 limit	 or	 mislead	
fingerprinting	attempts	[Anderson	and	McGrew,	2017,	Hosseinzadeh	et	al.,	2015].	

Application	 Layer:	 The	 application	 layer	 encompasses	 many	 different	 applications	 that	 could	 be	
running	on	a	host,	as	well	as	 their	configurations,	associated	data,	and	user	activities.	This	 includes	
security	 applications,	 including	 AICA	 agents.	 Examples	 of	 application-level	 obfuscation	 include	 the	
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framework	proposed	by	Perez	et	al.	that	identifies	and	obfuscates	user	data	using	metadata	and	related	
obfuscation	strategies	[Perez	et	al.,	2018].	Software	or	application	data	can	also	be	obfuscated	level	by	
level	 to	achieve	 layered	security	[Xu	et	al.,	2020].	Other	examples	have	used	adversarial	 learning	to	
obscure	data	without	compromising	semantic	attributes	[Bertran	et	al.,	2019].	
	
	
2.2	 Decoy	Technologies	

Moving	beyond	obfuscation,	deception	methods	aim	to	explicitly	create	false	beliefs,	rather	than	just	
hiding	or	changing	the	characteristics	of	existing	systems	or	data.	One	of	the	most	common	forms	of	
deception	is	using	decoy	objects	(e.g.,	host,	files,	tokens,	etc.)	that	can	be	used	to	distract	and	confuse	
attackers,	as	well	as	to	improve	detection	and	monitoring	of	malicious	activities	[Rauti	and	Lepp¨anen,	
2017].	Han	et	al.	provides	a	 layered	categorization	 for	different	deception	 techniques[?].	Effectively	
deploying	 decoys	may	 be	 an	 important	 task	 for	 AICA	 agents,	who	may	 also	 do	 this	 dynamically	 in	
response	to	detected	attacker	activities	(e.g.,	deploying	a	new	honeynet	in	response	to	specific	scanning	
activities).	AICA	agents	may	also	use	decoys	to	try	to	distract	opponents	from	their	own	presence	or	
activities.	

Network	Layer:	Network	 traffic	sniffing,	 scanning,	and	 fingerprinting	major	attacks	 in	 the	network	
layer,	which	 involve	capturing	and	analyzing	existing	network	packets,	or	generating	malicious	and	
fingerprinting	packets.	The	system	can	deceive	the	attacker	by	redirecting	attack	traffic	(e.g.,	ICMP/TCP	
packets)	 to	 a	 honey	 network	 or	 fake	 virtual	 machines	 [Sharma	 and	 Kaul,	 2018],	 generating	
vulnerability-driven	honey	traffic	 to	prevent	optimal	 fingerprinting	or	packet	analysis	 [Anjum	et	al.,	
2020],	 etc.	These	methods	may	also	 lead	 the	 attacker	 to	 form	 incorrect	beliefs	 and	plan	 ineffective	
attacks	or	target	fake	systems	rather	than	real	ones.	

System	Layer:	Attackers	typically	want	to	compromise	internal	systems	one	after	another	and	plan	for	
the	next	attacks.	To	deceive	adversaries	from	attacking	a	real	system,	honeypots	are	widely	used	in	the	
industry.	 A	 honeypot	 is	 a	 fake	 system	 that	 may	 or	 may	 not	 resemble	 the	 original	 hosts.	 Recent	
applications	 of	 honeypot	 include	 VANET	 Cloud	 [Sharma	 and	 Kaul,	 2018],	 industrial	 cyberphysical	
systems	[Sun	et	al.,	2020],	real-time	intrusion	detection	[Baykara	and	Das,	2018],	defending	IoT	based	
botnet	DDoS	attacks	[Vishwakarma	and	Jain,	2019,	Du	and	Wang,	2019],	capturing	CPE	and	IoT	zero	
days	[Vetterl	and	Clayton,	2019],	and	classifying	botnet	attacks	[Lee	et	al.,	2021].	

Application	Layer:	Application	layer	reconnaissance	includes	software	and	application	vulnerability	
scanning.	Both	native	and	web-based	applications	are	targeted	by	the	attackers.	Several	fake	entities	of	
software	and	applications	can	be	utilized	to	detect	and	monitor	malicious	activity	[Rauti	and	Lepp¨anen,	
2017].	Software	decoys	are	widely	used	to	prevent	counter-intelligence	[FergusonWalter	et	al.,	2021].	
Other	application-level	decoys	include	honeytokens	[Ferguson-Walter	et	al.,	2019],	honeypermissions	
for	insider	threat	detection	[Kaghazgaran	and	Takabi,	2015],	and	honeyfiles	such	as	automated	decoy	
documents	[Voris	et	al.,	2015].	

3	 Optimizing	Camouflage	Strategies	

We	have	given	some	examples	of	specific	actions	and	tactics	that	can	be	used	to	achieve	the	broad	goals	
of	cyber	camouflage.	Now	we	turn	to	the	question	of	how	to	deploy	these	camouflage	techniques	and	
actions	effectively,	taking	into	account	the	costs	and	possible	impacts	on	resource	utilization,	activities	
of	real	users,	etc.	The	details	of	these	decisions	will	vary	depending	on	the	purpose	of	the	camouflage,	
the	 techniques	 being	 used,	 specific	 costs	 and	 constraints,	 and	 assumptions	 about	 the	 adversary.	
However,	 the	 literature	 provides	 a	 set	 of	 fundamental	 principles,	 models,	 and	 algorithms	 that	 are	
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abstract	enough	that	they	can	be	used	for	decision	support	and	automation	across	a	broad	range	of	
cyber	camouflage	and	deception	situations.	We	now	introduce	some	basic	models	for	optimizing	cyber	
camouflage	decisions	using	game	theoretic	models	and	provide	references	for	further	reading	on	more	
advanced	models.	

3.1	 Optimizing	Decoy	Resource	Allocation	

One	area	where	game-theoretic	approaches	have	been	very	successful	in	finding	optimal	strategies	for	
allocating	 limited	 deceptive	 resources	 to	 detect	 and	 distract	 attackers	 [Carroll	 and	 Grosu,	 2011,	
Kiekintveld	 et	 al.,	 2015].	 One	 example	 is	 the	 Honeypot	 Selection	 Game	 (HSG)	 [P´ıbil	 et	 al.,	 2012,	
Kiekintveld	 et	 al.,	 2015]	 that	 models	 the	 problem	 of	 allocating	 honeypots	 to	 a	 network.	 In	 a	 real	
network,	not	all	systems	are	equally	important.	A	database	server	may	be	much	more	valuable	than	a	
user	laptop	or	mobile	device.	A	strategy	for	deploying	honeypots	should	take	this	into	account	when	
deciding	what	kinds	of	systems	to	create	as	decoys.	The	HFG	model	uses	a	zero-sum	game	to	optimize	
the	importance	values	of	honeypots	to	deploy	to	increase	the	likelihood	that	an	attacker	will	target	a	
honeypot	rather	than	a	real	system.	Durkota	et	al.	[Durkota	et	al.,	2015]	extends	this	model	by	using	
attack	graphs	to	determine	the	attacker’s	optimal	attack	plans	against	the	defender	strategy,	where	the	
defender	 strategy	modifies	 the	 attack	 graph	by	 adding	honeypots	 to	 interdict	 attacker	 actions.	 The	
attack	graphs	allow	the	attacker	to	attack	sequentially,	with	costs	and	probabilities	of	success	or	failure	
associated	with	each	attempt.	[Anwar	et	al.,	2021]	also	determine	the	optimal	strategy	for	deploying	
honeypots	on	the	attack	graphs	in	a	dynamic	environment	where	the	attacker	and	defender	interact	
and	can	make	changes	based	on	observations	of	the	other	player.	[Wang	et	al.,	2017]	uses	Bayesian	
games	to	explore	honeypot	strategies	in	the	smart	grid	to	prevent	denial	of	service	attacks.	La	et	al.	[La	
et	 al.,	 2016]	 also	 optimizes	 honeypot	 deployment	 for	 mitigating	 denial-of-service	 attacks	 in	 the	
Internet-of-Things	domain.	[Du	et	al.,	2017]	uses	Bayesian	game	modeling	to	solve	a	similar	problem	
for	honeypots	in	the	social	networking	domain.	Anjum	et	al.	[Anjum	et	al.,	2020]	use	a	Stackelberg	game	
to	deploy	honey	flows	(fake	network	traffic)	optimally	to	confuse	the	attacker	in	distinguishing	real	and	
fake	vulnerabilities.	

3.2	 Optimizing	Feature	Obfuscation	

In	 addition	 to	 deploying	 deceptive	 objects,	 there	 is	 also	 a	 significant	 body	 of	 work	 in	 optimizing	
strategies	 to	obfuscate	 features	of	particular	objects.	This	 can	be	used	both	 to	make	more	effective	
decoys	 (by	making	 them	 look	more	 realistic)	 and	 to	disguise	or	 camouflage	 real	 objects	 (by	hiding	
information	or	making	them	look	fake).	For	example,	and	AICA	agent	may	want	to	disguise	the	features	
of	a	binary	or	network	traffic	to	make	it	look	like	a	normal	application.	

The	Cyber	Deception	Game	(CDG)	[Schlenker	et	al.,	2018]	computes	an	optimal	deception	strategy	
for	concealing	specific	characteristics	of	network	hosts.	This	game	focuses	on	invalidating	an	attacker’s	
information	in	the	reconnaissance	phase	by	deciding	what	signals	the	defender	wants	to	send	about	the	
type	 of	 the	 host.	 The	 defender	 can	 respond	 with	 obfuscated	 messages	 when	 the	 attacker	 probes	
network	 hosts,	 but	 the	model	 is	 limited	 to	 zero-sum	 settings.	 The	 Cyber	 Camouflage	 Games	 (CCG)	
[Thakoor	et	al.,	2019]	extends	the	CDG	model	by	considering	a	general-sum	setting.	This	model	also	
considers	uncertainties	in	the	defender’s	knowledge	of	the	attacker’s	valuations	of	different	network	
hosts.	[Miah	et	al.,	2020]	present	a	Bayesian	game	model	to	find	the	optimal	strategy	for	obfuscating	
the	observable	characteristics	of	either	real	or	fake	objects,	making	it	difficult	to	distinguish	between	
them.	[Guan	et	al.,	2001]	camouflages	payload	traffic	components,	such	as	the	communication	system,	
location,	diversity	of	hosts,	network	topology,	etc.,	such	that	their	pattern	is	unrelated	to	the	operational	
status	of	applications	to	an	observer.	However,	this	method	is	inefficient	and	can	result	in	significant	
network	overhead.	

While	there	are	various	methods	for	obfuscating	network	traffic,	Ciftcioglu	et	al.	[Ciftcioglu	et	al.,	
2017]	use	a	game	model	to	obfuscate	network	traffic,	considering	that	defender	has	limited	resources	
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and	 obfuscation	 has	 network	 overhead.	 The	water-filling	 algorithm	 is	 another	 efficient	method	 for	
finding	 traffic	 obfuscation	 strategies	 for	 a	 given	 budget	 [Ciftcioglu	 et	 al.,	 2018].	 Machine	 learning	
methods	have	also	been	used	for	optimizing	feature	obfuscation,	making	use	of	the	gradient	of	the	loss	
function	for	generating	a	perturbation	[Carlini	and	Wagner,	2017,	Szegedy	et	al.,	2013].	Verma	et	al.	
[Verma	et	 al.,	 2018]	present	 an	 adversarial	machine	 learning	 approach	 that	 uses	 a	 post-processing	
procedure	on	the	resulting	distributions	to	manipulate	network	traffic.	However,	the	proposed	method	
sometimes	 generates	 incorrect	 perturbations	 and	 does	 not	 correspond	 to	 real-world	 scenarios.	
[Granados	 et	 al.,	 2020]	 impose	 more	 generalized	 constraints	 for	 obfuscating	 traffic	 samples	 and	
generate	valid	perturbation	and	distribution.	

4	 Example	Methods	for	Optimizing	Camouflage	

This	section	presents	three	examples	of	cyber	camouflage	optimization	techniques	from	the	literature	
in	more	detail.	The	first	model	determines	an	optimal	strategy	for	disguising	network	configurations	
using	a	game-theoretic	model	for	optimizing	signaling	strategies.	The	second	model	uses	game	theory	
to	determine	how	to	modify	individual	features	of	both	real	and	deceptive	objects	to	make	them	more	
effective	as	decoys,	or	confusing	real	objects.	The	final	approach	brings	in	a	different	set	of	techniques	
in	machine	learning	to	address	similar	questions	of	how	to	modify	features	in	a	more	scalable	way.	All	
of	 these	models	can	be	generalized	to	different	cyber	camouflage	problems	by	considering	different	
action	spaces	and	objective	functions.	

4.1	 Disguising	Network	Attributes	

A	 network	 topology	 comprises	 multiple	 systems,	 each	 with	 its	 own	 set	 of	 attributes	 such	 as	 the	
operating	system,	running	services,	antivirus	protection	measures,	etc.	A	system’s	true	configuration	
(TC)	could	be	any	combination	of	 these	attributes,	and	systems	have	different	TCs.	An	attacker	can	
employ	network	scanning	to	learn	about	each	system’s	characteristics	before	attempting	to	exploit	a	
target.	 This	 reconnaissance	 reveals	 potential	 weak	 points,	 such	 as	 open	 ports,	 operating	 services,	
subnetworks,	user	information,	etc.	Then	the	attacker	uses	specific	vulnerability	information	to	find	a	
strategy	for	system	exploitation.	However,	if	the	network	defender	obfuscates	the	information	collected	
by	 an	attacker,	 the	 likelihood	of	 a	 successful	 attack	decreases.	A	defender	 can	benefit	 from	using	 a	
combination	of	truthful,	false,	and	obscured	responses	to	the	attacker’s	network	probes.	For	example,	
consider	a	network	with	one	system	running	NGINX	web	serber	and	two	systems	running	a	Tomcat	
proxy	server.	The	attacker	has	a	specific	NGINX	exploit	and	examines	all	systems	using	NGINX	before	
deploying	the	exploit.	If	the	defender	can	deceive	the	attacker	about	the	webserver,	the	attacker	needs	
to	exploit	all	systems	to	infiltrate	the	network.	The	attacker’s	network	infiltration	is	delayed	by	this	
deception	strategy,	giving	 the	defender	more	 time	 to	detect	an	attack.	The	defender	might	also	use	
deception	techniques	to	reveal	parts	of	a	system’s	observable	attributes	that	are	not	true	configuration,	
such	 as	 changing	 the	TCP/IP	 stack	 or	 spoofing	 a	 running	 service	 on	 a	 port.	Determining	deception	
strategies	to	alter	an	attacker’s	perception	is	challenging	for	the	defender	and	also	associated	with	cost.	

Cyber	 Deception	 Game	The	 Cyber	 Deception	 Game	 (CDG)	 [Schlenker	 et	 al.,	 2018]	 addresses	 this	
problem	and	determines	the	optimal	strategies	to	optimize	the	defender’s	deception	strategy.	The	CDG	
is	a	two-player	zero-sum	Stackelberg	game	between	a	defender	and	an	attacker.	The	defender	moves	
as	a	leader	and	determines	how	to	respond	to	the	attacker’s	scanning	activity.	The	attacker	moves	as	a	
follower	and	chooses	a	system	to	attack	based	on	the	observations.	The	model	assumes	that	when	an	
attacker	probes	a	system,	 the	defender	controls	 the	attacker’s	perception	of	observed	configuration	
(OC).	Masking	a	true	configuration	TC	with	an	OC	incurs	a	cost	for	the	defender.	The	true	configuration	
TC	of	a	system	is	associated	with	a	utility	that	is	the	attacker’s	reward	and	an	equal	loss	for	the	defender.	
Therefore,	the	defender’s	objective	is	to	determine	optimal	strategies	to	mask	TCs	with	OCs	to	minimize	
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the	attacker’s	expected	utility	while	considering	deception	costs.	The	following	is	a	formal	description	
of	the	game	notation:	

– χ	and	¯χ	represents	all	possible	TCs	and	OCs	respectively.	
– The	true	state	of	the	network	(TSN)	is	a	vector	υ	=	(υx)x∈χ,	where	υx	is	the	number	of	systems	on	the	
network	with	a	TC	x	∈	χ.	

	

Fig.1:	Example	of	an	enterprise	network.	

– Similarly,	the	attacker’s	observed	state	of	the	network	(OSN)	is	a	vector	¯υ	=	(¯υx¯)x¯∈χ¯.	Here,	two	
systems	with	the	same	¯x	as	their	OC	are	indistinguishable	from	the	attacker’s	perspective.	

– Λ	is	the	feasibility	constraint	as	a	(0,1)-matrix	that	defines	whether	or	not	x	can	be	masked	with	¯x,	
with	1	denoting	feasibility.	

– ζ(x,x¯)	denotes	the	defender	cost	of	masking	a	TC	x	with	an	OC	¯x	

Defender	Strategies:	The	CDG	considers	that	the	defender	knows	the	TSN,	all	possible	TCs	and	OCs,	
costs,	total	budget	and	feasibility	constraints.	The	defender	strategy	Θ	is	to	determine	how	many	of	the	
υx	systems	having	TC	x	,	should	be	assigned	to	the	OC	¯x.	Therefore,	all	possible	strategies	are	a	|χ|	×	|χ¯|	
matrix	where	Θx,x¯	representing	the	number	of	systems	having	TC	x	is	masked	with	OC	¯x.	Θ	must	satisfy	
the	following	constraints:	

– Any	entry	Θx,x¯	of	|χ|	×	|χ¯|	matrix	must	be	a	non-negative	integer	
– The	total	number	of	systems	having	any	TC	x	and	OC	¯x	must	be	equal	to	υx	since	the	CDG	assumes	
that	the	TSN	υx	is	fixed.	

– The	Θ	must	satisfy	feasibility	constraints.	The	defender	is	not	allowed	to	mask	any	TC	x	with	any	
OC	¯x	if	the	entry	Λx,x¯	of	(0,1)-matrix	Λ	is	0.	

– Finally,	the	total	masking	cost	must	be	less	than	or	equal	to	the	cost	budget.	

Attacker’s	Strategies:	Following	the	defender’s	move,	the	attacker	observes	the	OSN	¯υ	and	tries	to	
attack	the	OC	̄ x	that	gives	the	highest	expected	utility.	The	attacker	is	indifferent	in	attempting	an	attack	
against	all	such	¯υx¯	because	all	the	systems	with	the	same	OC	¯x,	are	indistinguishable.	Therefore,	when	
he	selects	an	OC	¯x,	he	means	that	he	attacks	all	systems	with	an	OC	¯x	with	the	same	probability.	

Utility	The	defender	aims	to	protect	a	set	of	systems	Ns	from	potential	exploits	where	each	system	is	
associated	with	a	utility	that	is	the	attacker’s	reward	for	attacking	it.	This	utility	depends	on	the	TC	of	a	
system	where	Ψx	denotes	the	utility	of	each	x	∈	χ.	The	Ψx	might	be	negative	when	a	system’s	security	
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level	is	high,	or	the	attacker	receives	incorrect	information.	If	the	defender’s	strategy	is	Θ,	the	attacker’s	

expected	utility	Ψ¯x¯	for	attacking	an	OC	¯x	with	¯υx>¯	0	is	defined	by:	

	

The	equation	denotes	that	¯υx¯	systems	having	an	OC	¯x,	Θx,x¯	have	a	TC	x.	When	the	attacker	attacks	¯x,	

the	defender’s	expected	utility	is	−Ψ¯x¯	since	the	game	is	zero-sum.	Here,	the	attacker	is	restricted	to	
attack	an	OC	¯x	when	¯υx¯	=	0	because	it	leads	his	expected	utility	to	−∞.	
Small	Example	Figure	 (1)	 shows	a	example	of	 a	 small	network	 that	 comprises	a	 set	of	 systems	N	=	
{n1,n2,n3,n4},	a	set	of	TCs	χ	=	{x1,x2,x3}	(Shown	in	Figure	(1)	as	the	gray	boxes)	and	set	of	OCs	¯χ	=	{x¯1,x¯2}	
(Shown	in	Figure	(1))as	the	blue	boxes).	Let	χx¯1	=	{x1,x2}	and	χx¯2	=	{x2,x3}	be	feasibility	constraints	sets.	
According	to	Figure	(1),	the	following	are	the	TCs:	

x1	=	[[os]L,[web]N,[files]S]	x2	=	

[[os]W,[web]T,[files]I]	x3	=	

[[os]W,[web]T,[files]P]	

Also,	the	following	are	the	OCs:	

x¯1	=	[[os]L,[web]T]	¯x2	=	[[os]W,[web]N]	

Let	the	utilities	be	Ψx1	=	5,Ψx2	=	0,	and	Ψx3	=	6.	For	simplicity,	let	all	the	costs	ζ(x,x¯)	be	0	with	no	budget	
constraint.	According	to	Figure	(1),	the	true	state	of	the	network	(υx)x∈χ	is	(2,	1	,1),	and	the	defender	
strategy	Θ	is	given	by	

x¯1	x¯2	

x1"	2	0	#	x2	0	
1	x3	0	1	

Now,	if	the	attacker	attempts	to	attack	¯x1,	his	expected	utility	is	Ψ¯x¯1	=	(2	∗	5)/2	=	5	.	On	the	other	

hand,	the	expected	utility	of	attacking	¯x2	is	Ψ¯x¯2	=	(0	+	6)/2	=	3.	Therefore,	attacking	¯x1	is	the	best	
response	for	the	attacker	and	the	defender	loses	an	equal	amount.	

4.2	 Feature	Selection	Game	

The	Feature	Selection	Game	(FSG)[Miah	et	al.,	2020]	addresses	a	different	aspect	of	 the	camouflage	
problem,	deciding	how	exactly	to	modify	the	features	of	real	or	fake	objects	to	achieve	a	specific	goal	
(e.g.,	making	 fake	 objects	 appear	more	 realistic).	 The	 FSG	 is	modeled	 as	 a	 general-sum	 two-player	
extensive	form	imperfect	information	game	between	an	attacker	and	defender.	The	defender’s	goal	is	
to	strategically	modify	both	real	and	fake	objects	so	that	the	attacker	can’t	tell	the	difference.	Objects	
are	associated	with	observable	 feature	vectors	 that	can	provide	useful	 information	to	 the	attackers,	
allowing	 them	 to	 distinguish	 objects	more	 accurately.	 To	make	 classification	 difficult,	 the	 defender	
changes	the	observable	features	of	real	and	fake	samples,	which	we	call	2-sided	deception.	The	FSG	can	
be	formally	defined	by	the	tuple	FSG	=	(K,vr,vh,Pr,Pf,τ,χ).	Here,	K	represents	the	complete	set	of	real	and	
fake	samples.	Pr	and	Pf	are	the	probability	distributions	over	feature	vectors	of	real	and	fake	samples	
where	the	nature	player	generates	the	configurations	based	on	these	distributions.	Samples	x	=	(x1,...,xk)	

are	generated	according	to	the	joint	distribution	Px	where ).	The	
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defender	examines	a	sample	x	∈	X,	where	X	represents	all	possible	samples,	and	then	takes	steps	to	
change	each	object’s	 features.	An	action	d	∈	D	results	a	new	configuration	x′	∈	X,	which	the	attacker	
observes	and	uses	as	 an	 information	 set	 I	∈	τ.	 In	 each	 I,	 the	attacker	perceives	any	permutation	of	
configurations	in	the	same	way.	Therefore,	he	cannot	reliably	detect	real	and	fake	objects	in	a	feature	
vector.	The	data	set	for	the	attacker	is	the	set	of	all	possible	combinations	of	object	configurations	where	
attacker’s	action	aI	is	to	detect	real	and	fake	objects	in	each	information	set	I.	

The	utility	functions	in	this	game	are	calculated	based	on	the	importance	values	of	the	objects	and	
the	cost	of	changing	the	features.	The	attacker	gets	positive	rewards	when	he	correctly	detects	real	and	
fake	objects,	but	he	receives	a	penalty	for	misclassifying.	In	particular,	if	an	attacker’s	action	a	in	the	
information	 set	 I	 corresponds	 to	 a	 real	 object,	 then	 the	 utility	 function	U(x,j,a)	 =	 vr,	 whereas,	 if	 it	
corresponds	to	a	fake	object,	then	U(x,j,a)	=	−vf	where	vr	and	vf	are	the	importance	values	for	real	and	
fake	objects,	respectively.	The	defender	loses	the	same	amount	as	the	attacker’s	positive	reward,	but	
the	situation	is	reversed	when	the	attacker	misclassifies.	This	part	of	the	utility	function	represents	the	
zero-sum	component	of	the	game.	However,	the	defender	needs	to	pay	additional	cost	to	change	the	
characteristics,	which	makes	the	game	model	non-zerosum.	The	defender’s	action	in	a	sample	x	that	
produces	an	information	set	I,	where	different	actions	in	different	network	samples	can	result	in	the	
same	I.	Then,	in	each	I	∈	τ,	the	attacker	plays	the	best	response	where	the	defender’s	objective	is	to	
maximize	his	utility,	 considering	 feature	modification	costs.	 In	principle,	 the	FSG	game	allows	us	 to	
determine	optimal	camouflage	strategies	for	the	defender	to	modify	the	appearance	of	different	objects.	
However,	 in	 practice	 this	model	 has	 limited	 scalability	 due	 the	 exponential	 growth	 in	 the	 strategy	
spaces	as	the	number	of	features	grows.	This	leads	us	to	consider	a	machine	learning	variation	that	can	
approximate	this	type	of	strategy	in	the	next	section.	

4.3	 Two-Sided	Feature	Deception	Using	Adversarial	Learning	

The	 Two-Sided	 Generative	 Adversarial	 Network	 (TS-GAN)	 solves	 the	 two-sided	 feature	 deception	
problem	in	a	complex	and	large	feature	space	by	using	adversarial	 learning	techniques.	It	generates	
fake	 samples	 that	 look	 like	 real	 samples	 and	 real	 samples	 that	 look	 like	 fake	 samples.	 This	model	
consists	of	two	parts:	the	attacker	and	the	defender.	The	defender	contains	two	modules,	and	both	are	
neural	networks.	One	of	the	networks	is	a	generator	that	generates	fake	data,	which	is	represented	as	
Gθ	with	θ	parameters.	The	Gθ	uses	a	latent	space	z	from	an	l-dimensional	spherical	Gaussian	distribution	
Pg	to	create	a	fake	sample	x′	=	Gθ(z).	It	learns	to	estimate	the	distribution	from	which	the	real	training	
data	is	drawn	to	generate	fake	samples.	The	objective	of	Gθ	is	to	minimize	the	probability	of	a	generated	
sample	being	detected	as	fake	by	the	attacker.	The	defender’s	second	neural	network	is	the	Obfuscator,	
which	 refers	 to	Oθ	with	θ	parameters.	The	Oθ	takes	 the	original	 instance	x	as	 input	and	generates	a	
perturbation	Oθ(x).	The	dimensions	of	the	input	data	and	output	perturbed	data	of	this	network	are	
identical.	Then	x+Oθ(x)	will	be	passed	to	the	attacker.	The	learning	goal	of	Oθ	is	to	create	a	perturbed	
adversarial	example	that	is	indistinguishable	from	a	fake	sample.	

The	attacker	or	Discriminator	(Dθ)	is	also	a	neural	network	and	learns	to	detect	as	well	as	possible	
between	the	real	and	fake	samples.	The	problem	can	be	formulated	as	follows:	Let	(x1,.......,xn)	represent	
the	training	instances	and	(xi,yi)	is	the	ith	instance	in	the	training	set,	which	is	made	up	of	feature	vectors	
xi	∈	 χ	where	 χ	⊆	Rn	represents	 the	 feature	 space	 and	 yi	corresponding	 real	 class	 label	 (1).	 Also,	 let	
Gθ(z1),....,Gθ(zr)	be	a	collection	of	r	examples	from	the	generated	distribution	Pg	that	are	corresponding	
fake	class	label	(0)	and	represented	by	( )	where	

.	 Similarly,	 assume,	Oθ(x1),....,Oθ(xn)	 is	 a	 set	 of	 perturbation	 generated	 from	 (x1,.......,xn)	 where	
xi+Oθ(xi)	=	xadvi	∈	χ	is	the	ith	adversarial	example,	such	that	Dθ(xadvi	)	=	t	(target	attack)	where	t	is	the	
target	class	(0).	The	attacker’s	learning	goal	is	to	learn	a	classifier	Dθ	:	χ	→	Y from	the	domain	χ	to	the	
set	 of	 classification	 outputs	 Y ∈	 {0,1},	 where	 |Y|	 represents	 the	 number	 of	 classification	 outputs.	
Figure(2)	shows	the	basic	architecture	of	TS-GAN.	



	 9 

The	TS-GAN	model	can	be	considered	as	a	game	between	a	defender	and	an	attacker	where	the	
defender	uses	two	networks	Gθ	and	Oθ	to	minimize	the	detection	success	of	the	attacker	and	forms	a	
minimax	game	between	the	attacker	and	the	defender.	

5	 Evaluating	Camouflage	

We	 now	 discuss	 some	 general	 strategies	 for	 measuring	 and	 evaluating	 the	 effectiveness	 of	 cyber	
camouflage	and	deception.	There	are	several	 frameworks	 for	cyber	camouflage	 that	have	evaluated	
their	work	based	on	effectiveness	(e.g.,	optimal	defender	utility	in	game-theoretic	models	[Anwar	et	al.,	
2020,	Miah	 et	 al.,	 2020],	 expected	 number	 of	 attacks	 deceived	 [Rawat	 et	 al.,	 2019])	 and	 cost	 (e.g.,	
reducing	defender’s	cost	[Anwar	et	al.,	2020],	deceived	attacks	with	respect	to	deception	deployment	
time	 [Rawat	 et	 al.,	 2019]).	We	divide	 the	 evaluation	 of	 camouflage	models	 primarily	 based	 on	 two	
approaches:	theoretical	and	experimental	and	discuss	some	metrics	that	have	been	used	to	evaluate	
existing	models.	

	

Fig.2:	Two-sided	generative	adversarial	network	architecture.	

5.1	 Theoretical	Evaluation	

Theoretical	 evaluation	 is	 one	 of	 the	 first	 steps	 in	 assessing	 the	 potential	 benefits	 of	 camouflage	
strategies.	These	evaluations	assess	performance	within	the	context	and	assumptions	of	a	particular	
model,	and	usually	present	an	optimistic	view	of	the	potential	 impact	 in	a	realistic	setting.	They	are	
relatively	 easy	 to	 do,	 and	 a	 useful	 first	 step	 in	 evaluating	 different	 approaches.	 We	 present	 some	
examples	of	these	types	of	evaluation	from	the	literature.	

Non-Game-Theoretic	Evaluation:	Jajodia	et	al.	argued	that	attackers	could	map	system	configurations	
(e.g.,	type	of	operating	systems,	applications,	or	services)	for	a	particular	node	in	the	network	[Jajodia	
et	al.,	2017].	The	authors	propose	a	belief	state	model	that	considers	an	interval	of	probabilities	for	
specific	configurations	and	then	tightens	the	interval	over	time.	The	authors	proposed	two	algorithms	
(Naive-PLD	and	Fast-PLD)	to	keep	the	attacker	away	from	the	valuable	nodes	by	answering	a	scan	query	
that	minimizes	 the	 damage.	 They	 estimated	 the	 average	 damage	 against	 the	 attacker’s	 steps	when	
applying	these	algorithms.	Sugrim	et	al.	utilize	Bayesian	inference	to	update	the	attacker’s	belief	for	an	
individual	node	property	(e.g.,	IP	address)	[Sugrim	et	al.,	2018].	The	authors	quantified	the	attacker’s	
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updated	belief	over	the	increasing	number	of	operations.	They	also	measured	the	attacker’s	belief	error,	
yield,	and	footprints.	

Game-theoretic	Evaluation:	Game	theoretic	models	evaluate	each	player’s	(attacker	and	defender)	
strategies,	 and	 current	 works	 focus	 on	 optimizing	 strategies	 for	 the	 defender.	 In	 a	 typical	 Cyber	
Camouflage	Game,	computing	the	optimal	defender	strategy	is	NP-hard	[Thakoor	et	al.,	2019,	Milani	et	
al.,	2020],	where	the	first	model	masks	each	machine	with	different	observable	configurations	in	a	zero-
sum	game	setting,	and	the	second	model	alters	the	perceived	structure	of	the	attack	graph,	respectively.	
The	authors	proposed	approximation	algorithms	(e.g.,	MILP,	NAS,	etc.)	to	calculate	optimal	defender	
strategies.	Additionally,	there	are	several	honeypot	allocation	games	over	the	attack	graphs	in	cyber	
deception	or	camouflage	games	[Anwar	et	al.,	2020].	

Milani	et	al.	quantified	average	defender	utility	for	different	proposed	algorithms	achieved	against	
the	number	of	nodes	in	the	network	[Milani	et	al.,	2020].	The	authors	compared	the	performances	of	
these	algorithms	by	calculating	the	average	defender	utility	over	time.	One	of	the	essential	evaluation	
metrics	 is	 the	 run	 time	 of	 proposed	 algorithms	 to	 approximate	 an	 optimal	 solution	 and	how	 these	
algorithms	handle	the	scaling	of	a	network.	For	example,	a	typical	experiment	could	be	quantifying	the	
algorithm	run	time	against	the	increasing	size	of	the	network	[Anwar	et	al.,	2020].	Similarly,	Thakoor	
et	al.	calculated	the	run	time	of	the	proposed	MILP	with	cuts	against	the	strategy	space	size.	Another	
metric	is	each	player’s	cost	estimation.	The	goal	is	always	to	increase	the	attack	cost	or	maintain	the	
defender’s	cost	as	low	as	possible.	For	example,	Anwar	et	al.	estimated	the	defender	reward	at	Nash	
Equilibrium	(optimal	allocation)	and	random	allocation	at	different	attack	costs	[Anwar	et	al.,	2020].	

Here,	we	show	an	example	game-theoretic	measurement	presented	by	Miah	et	al.	[Miah	et	al.,	2020],	
where	the	authors	calculated	defender’s	utility	in	different	scenarios	3.	The	authors	showed	that	the	
defender	can	benefit	significantly	through	utilizing	the	two-sided	feature	deception	model	when	the	
unmodifiable	features	are	different	in	real	and	honeypot	hosts.	Figure	3a	considers	two-sided	feature	
deception	while	calculating	the	defender’s	utility.	Figure	3b	presents	a	comparison	between	a	rational	
and	naïve	attacker.	The	author	confirms	that	the	best	case	is	when	the	defender	can	perform	two-sided	
deception	against	a	naïve	attacker	and	the	worst	case	is	when	the	defender	ignores	deception	against	a	
fully	rational	attacker.	

	
 (a)	When	some	features	cannot	be	modified.	 (b)	Na¨ıve	attacker	versus	a	fully	rational	attacker.	

Fig.3:	Game-theoretic	model	evaluation	(comparison	of	defender	utility)	Miah	et	al.	[2020].	

	

	

5.2	 Experimental	Evaluation:	
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Theoretical	models	may	not	always	correspond	to	the	results	obtained	from	a	real-world	scenario	for	a	
variety	of	reasons.	Therefore,	 it	 is	 important	to	also	conduct	evaluations	using	experiments	in	more	
realistic	settings,	ideally	using	real-world	architectures,	data,	etc.	as	much	as	possible.	

Automated	 Adversaries:	 Automated	 evaluation	 depends	 on	 particular	 objectives	 in	 a	 predefined	
scenario,	such	as	a	particular	type	of	attacker	or	a	typical	vulnerability/exploit	choice.	Simulation	can	
be	used	to	evaluate	strategies	based	on	a	pre-defined	automated	attacker,	which	has	the	advantage	of	
consistency	 and	 speed.	 For	 example,	 Rawat	 et	 al.	 evaluated	 performance	 of	 deception	 system	 for	
deceiving	cyber	adversaries	in	adaptive	virtualized	wireless	networks	[Rawat	et	al.,	2019].	The	authors	
quantified	the	expected	number	of	attacks	and	deceived	attacks	with	respect	to	deception	deployment	
time.	They	also	plotted	the	successful	attack	time	with	respect	to	the	deception	deployment	time.	

Human	Adversaries:	In	many	cases	the	ideal	evaluation	is	done	using	humans,	including	penetration	
testers,	 read	 teams,	 or	 ethical	 hackers	 to	 evaluate	 the	 impact	 of	 strategies	 in	 a	 realistic	 scenario.	
Evaluation	using	humans	can	account	for	how	humans	may	really	make	decisions	(including	imperfect	
ones),	 which	 could	 vary	 considerably	 from	 perfect	models	 in	 cyber	 deception	 scenarios.	 However,	
human	data	is	also	limited	and	expensive,	and	humans	can	exhibit	a	wide	variety	of	behaviors	and	their	
responses	may	depend	heavily	on	background	knowledge	and	expertise,	especially	in	very	technical	
domains.	

Shade	 et	 al.	 performed	 an	 experimental	 evaluation	 of	 host-based	 deception	 that	 involved	 30	
participants	 in	 choosing	 any	 host	 to	 attack	 [Shade	 et	 al.,	 2020].	 The	 authors	measured	 the	 ratio	 of	
successful	task	completion,	the	proportion	of	successful	commands,	and	time	to	task	completion.	They	
also	estimated	the	total	time	to	complete,	time	wasted	on	decoys,	reported	surprises,	etc.	

Acosta	 et	 al.	 designed	 a	 cyber	 deception	 experimentation	 system	 (CDES)	 where	 the	 authors	
proposed	an	on-demand	honeypot	instantiation	approach	[Acosta	et	al.,	2021].	Here	the	honeypots	are	
dynamically	 instantiated	and	presented	before	an	 identified	attacker.	They	proposed	 three	 types	of	
configurations:	no	 inst	configuration	where	 the	honey	VM	 is	 instantiated	beforehand,	pause	 resume	
configuration	where	VMs	are	usually	in	a	suspended	state	and	activated	only	when	resumed,	and	save	
state	case	where	the	VMs	are	offloaded,	but	their	state	is	saved	and	restored	based	on	the	requirement.	
Figure	4	compares	the	ping	delays	using	CDES	in	pause	resume	and	save	state	configurations.	Here,	the	
the	Native	setup	uses	a	separate	laptop	to	run	CDES.	The	authors	also	experimented	with	the	In-VM	
setup,	which	uses	the	CORE	emulator	within	a	virtual	machine.	Later,	the	authors	estimated	the	CPU	
and	memory	usage	(Figure	5)	while	executing	these	frameworks.	

	

Fig.4:	Ping	delays	in	Native	configuration	Acosta	et	al.	[2021]	
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Fig.5:	Utilization	during	the	execution	of	the	three	configurations	[Acosta	et	al.,	2021]	

The	primary	goals	of	evaluating	camouflage	frameworks	are	to	estimate	optimal	defender’s	strategy	
and	cost	while	minimizing	the	affect	in	network	or	system	performance.	Even	though	there	are	several	
theoretical	 models,	 it	 is	 necessary	 to	 test	 the	 effectiveness	 of	 the	 models	 or	 frameworks	 with	
experimental	setups	and	human	evaluation	to	evaluate	outcomes	in	more	realistic	settings.	

6	 Summary	and	Conclusions	

This	 chapter	 has	 discussed	 several	 different	 aspects	 of	 strategic	 cyber	 camouflage,	 including	
implementation,	modeling,	 optimization,	 and	 evaluation.	 All	 of	 these	 are	 key	 considerations	 for	 an	
Autonomous	Intelligent	Cyber-defense	Agent	(AICA),	both	for	taking	actions	to	disguise	a	network	and	
to	 conceal	 the	 activities	 of	 the	 AICA	 agent.	 In	 the	 basic	 form,	 cyber	 camouflage	 is	 about	 hiding	
information	from	an	adversary,	making	their	reconnaissance	less	effective.	However,	more	advanced	
forms	can	also	use	deception	tactics	to	introduce	false	information	and	beliefs,	such	as	the	use	of	decoy	
objects	(hosts,	traffic,	etc.)	into	a	network.	These	tactics	can	all	achieve	goals	including	confusing	the	
attacker	and	increasing	uncertainty,	delaying	attacks,	creating	additional	opportunities	for	detection,	
etc.	An	AICA	can	implement	decoy	and	obfuscation	technologies	at	different	layers	(network,	system,	
and	application)	and	can	choose	the	best	strategies	based	on	an	optimal	solution.	The	game	theory	and	
machine	learning	models	presented	here	are	examples	that	can	be	used	as	the	basis	for	implementing	
AI	strategies	for	using	camouflage,	but	they	are	only	a	starting	point,	and	many	additional	factors	can	
be	taken	into	account	in	developing	more	advanced	strategies.	In	addition,	we	have	presented	some	
initial	evaluations	but	 there	 is	much	work	to	be	done	to	evaluate	different	cyber	camouflage	tactics	
deployed	by	real	AICA	agents	in	realistic	networks,	particularly	in	the	presence	of	adversarial	agents.	
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