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Abstract—Industrial electric power grid operation subject to
an extreme event requires decision-making by human operators
under stressful conditions. Decision making using system data
informatics under adverse dynamic events, especially if fore-
casted, should be supplemented by intelligent proactive control.
Power transmission system operation during wildfires requires
resiliency-driven proactive control for load shedding, line switch-
ing, and resource allocation considering the dynamics of the
wildfire and failure propagation to minimize the impact on the
system. However, the possible number of line and load switching
in an extensive industrial system during an event make traditional
prediction-driven and stochastic approaches computationally in-
tractable, leading operators to often use pre-planned or greedy
algorithms. In this work, we model and solve the proactive
control problem as a Markov decision process and introduce
an integrated testbed for spatio-temporal wildfire propagation
and proactive power-system operation. Our approach allows the
controller to provide setpoints for all generation fleets in the
power grid. We evaluate our approach utilizing the IEEE test
system mapped onto a hypothetical terrain. Our results show
that the proposed approach can help the operator to reduce load
outage during an extreme event. It reduces power flow through
lines that are to be de-energized, and adjusts the load demand
by increasing power flow through other lines.

Index Terms—Industrial Power System, Proactive Control,
Intelligent Control, Reinforcement Learning, Resiliency, Wildfire.

I. INTRODUCTION
A. Background

HANGING climate raises the potential for frequent wild-

fire events with catastrophic consequences on critical
industrial systems. To prevent the potential of originating
secondary wildfire hazards [1], several utilities in the USA
typically restrict power flow through some of their assets
during emergency events (e.g., public safety power shut-off, or
PSPS, events in the state of California, USA [2]). Compared
to other extreme weather events, the slow progression of
wildfires [3] across the large geographical span of industrial
power systems provides grid operators with sufficient time
to proactively control generator set-points in real-time to
prevent rolling black-out or even prevent cascading outages
(as observed in the 1977 New York black-out [4]). Here, we
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define proactive control as any pre-event or during-event action
to minimize the expected impact of an evolving extreme event.

Traditional power transmission system operation is gov-
erned by power system economics and the N — 1 operational
reliability criterion. However, in the advent of increasing
frequency of extreme weather events, operators across North-
America are thinking about stalling the economics-based
operation and move the system into resiliency mode. The
operators would rely on the emergency warning and caution
(EWAC) direction received from various stakeholders during
the transition. Techniques, such as Markovian model-based
proactive sequential re-dispatch of generators [5], resilience
metric-driven coordinated decision [6], stochastic resource
allocation approach [7], integrated proactive control [8], the
coordinated control of multiple microgrids connected via
transmission system [9], co-planning of transmission lines and
distributed resources [10], defensive islanding formation [11],
optimal power shut-offs [12], power shut-off with restoration
under limited budget [13], fair de-energization scheduling [14],
are common approaches for resilient transmission network
operation and control. There are also a plethora of tools for
optimal proactive control of power distribution systems (see
[15], [16] as examples).

B. Challenges

Furthermore, these proactive tools have limited industrial
use within the modern-day control center. Traditionally used
N —1 security constrained criterion utilized for economic load
dispatch or optimal power flow also comes under the proactive
scheme. The control center operators regularly utilize scenario-
based dynamic and static security assessments to determine
control actions for each kind of potential impact on the power
system, or if the impact materializes, then an emergency action
plan, including remedial action schemes, will be needed to be
deployed. These scenario-driven corrective control taken after
the system impact lacks customizability, and hence they are
truly sub-optimal.

In a deregulated environment, during the normal operating
mode, or during the emergency condition, some of the con-
trol actions may require coordination among various agents,
such as generating entities, Independent System Operators
(ISOs) / Regional Transmission Operators (RTOs), Distribu-
tion System Operators (DSOs), aggregators, and load-serving
entities. Abundant monitoring data from supervisory control
and data acquisition (SCADA) and phasor measurement units
(PMUs) can be leveraged in determining the outage forecast
and EWAC. These forecasts can be utilized for proactive
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Fig. 1: Computation time distribution of the optimizer with
conventional multi-period rolling-horizon optimization ap-
proach over 100 episodes.

resource allocation and deployment of necessary measures
to serve consumers during emergency conditions. In this
regard, statistical models of outage duration [17], [18] can
be applied by the operators for proactive resource allocation
and measures to serve the customers during emergency condi-
tion. However, the involvement of line and generator outages
during extreme events with combinatorial nature makes clas-
sical optimization-based approaches mixed-integer nonlinear
programming (MINLP) in nature, making the control task
computationally challenging and resource-intensive to handle
in real-time. Discussed forecast-based multi-period rolling-
horizon proactive optimal approaches, model-predictive or ro-
bust control approaches suffer from computational challenges
as demonstrated in Fig. 1, and hence they are difficult to be
deployed for real-time applications. As shown in the figure,
there is a significant percentage of the simulation not reaching
the optimality gap of 0.01% within the computation time of
900 s or 15 minutes (computation time might significantly
change depending upon the choice of solvers, but integer linear
programming problems are NP-hard in general), demonstrating
its lack of deployability. In almost all cases, the increased
computational time is needed to demonstrate the optimality of
the feasible solution and when the integer values are different
compared to the initial solution. Furthermore, recent events
have shown the unsuitability of traditional forecast models
in an effective determination of outage risk (e.g., majority
of the wind power generators were outaged due to lack of
winterization in the 2021 Texas power outage event).
Although recent advances in machine learning (ML) have
paved its way into power system, its scope has mostly been
limited to electric load, price, renewable generation forecast-
ing, fault, and failure analysis [19] and outage predictions
[20]. Despite recent literature on using machine learning for
operational support from RTE, France [21] and others [22],
lack of worst-case guarantee has posed an obstacle to using
ML algorithms for power system operational support [23]. In
the current context of proactive control of the power system,
utilizing historical wildfire propagation data, an ML-based
controller can help in real-time control of the power system in
the advent of the disaster, alleviate scenario-based emergency
action deployment as a corrective measure, resulting in an
efficient operation. This also alleviates the difficulties of tradi-

tional proactive optimization and rule-based approaches while
minimizing the possibility of human errors due to operating
in a stressful environment. Therefore, the objective is: can
we leverage recent advancements in ML-based approaches
to develop proactive control approaches providing us with
decision support for the power transmission system as the ex-
treme weather event progresses? In this regard, reinforcement
learning (RL) based power-system decision support has gained
significant traction in recent years [24], [25]. This, along
with recent advances in RL-based control [26], indicates the
plausibility of successful deployment of ML-based techniques
for proactive control in the advent of a disaster. Although
the proposed approach provides a decent feasibility guarantee,
in case the power system operators are skeptical of the use
of ‘black-box’ in the power system operation, the proposed
formulation could be suitably tuned to provide initial points
for the conventional rolling-horizon approaches.

C. Contributions

In this paper, a novel approach to aid power-system op-
erators in effective proactive intelligent control of available
resources during wildfires has been proposed. The core con-
tributions of this paper are as follows:

« Developed and formulated the proactive control problem
as a Markov decision process (MDP) for the power
system to minimize load outages considering the time
horizon of the wildfire event.

« Proposed a novel approach to solve the proactive control
problem, which is an ensemble of a compact repre-
sentation for the agent’s observation, action processing,
and a deep reinforcement learning (DRL) based power
generation coordination approach.

« Developed an integrated testbed' combining the wildfire
and the power-system simulator, which captures the im-
pact of the wildfire on the power-system assets.

Due to limited available literature, the efficacy of the
proposed approach has been compared against myopic control
policies. As discussed later in the paper, the control action
is determined solely based on the predicted next step. Given
the proposed DRL-based approach has limited foreseeing
capability, it can be envisaged that the proposed proactive
approach can reduce load losses resulting in reduced outages
compared to myopic control policies, which are also robust
regarding different fire propagation. The controller is able
to provide the decision-support agent with generation control
setpoints. The integrated testbed for training and evaluating the
performance of the developed agent utilizes an IEEE standard
transmission system mapped onto a topographical map with
careful consideration of the locations of power transmission
sub-stations.

D. Organization

Section II provides the integration of the simulator models
that allow MDP formulation. Section III introduces the MDP
formulation, and Section IV provides deep reinforcement

IThe testbed and the agent will be available as open-source software.
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Fig. 2: Overview of the proposed work with integration of
wildfire propagation and power system operational response

learning-based agent’s training procedure. Section V discusses
the simulation setup and the experimental results, and Section
VI finishes with concluding remarks.

II. SIMULATOR MODELS

Fig. 2 shows a high-level overview of the power-system
operation supplemented by an external RL agent/controller
during the wildfire events. The integrated model comprises
two major components: (i) an offline integrated testbed to
facilitate training of the RL agent and (ii) online deploy-
ment of the trained agent in the natural environment. This
section provides a detailed treatment of the integrated testbed
comprising of wildfire propagation testbed and power system
operation testbed, followed by their real-world equivalent. The
list of symbols utilized in Sections II and IV are provided in
Table 1. The first set of symbols in the table corresponds to
wildfire propagation and topography to power system topology
mapping; the second set of symbols corresponds to the power
system operations; and the third set corresponds to the DRL-
based agent control.

A. Wildfire Propagation Model

1) Wildfire Propagation Dynamics in Topographical Space:
Stochastic wildfire propagation model as given in [27] has
been utilized here to develop the testbed. Entire geographical
region comprises of a grid cell set, X. The temporal horizon
is also divided into uniform-length contiguous steps of k. The
state si i of fire in each cell x € X at the beginning of Eth
interval (i.e., at the k" time step) is captured by (i) status of
fire represented by a boolean variable d7, and (ii) available
wildfire fuel within the cell represented by an integer variable
hi (= 0).

The boolean variable di can be in either one of two states:
non-ignited di = 0 and ignited dj = 1. Once a cell is ignited,
it consumes fuel at a constant rate of C* until it exhausts
(burns) all fuel in the cell. Precise fuel availability dynamics
is given in (1). Once all the fuel is burnt, the cell returns to
the non-ignited state. Associated set of equations for ignition
dynamics are omitted for brevity.

T _ k-1 if —di_ Vhi, <0
k 7_, —C" otherwise.

(D

The evolution of status of fire dj, is stochastic and driven
by the transition probability pf. Specifically, the probability

Symbol Description

X,z Grid, cell z € X

M Total number of cells

k, Ak Time-step, step-size

s] State of wildfire at k

dg Burning status of cell z at k

c® Fuel burning rate of cell =

hi Amount of fuel in cell x at k

oy Probability of cell « being ignited at k

PZ, x Probability of fire spreading from cell y to x

! Neighboring cells of « that can contribute to fire spread

tox

N Node i, Set of nodes or buses i € N

t, T Transmission line ¢, Set of branches or transmission
linest € T

zlf s ztf Operational status of substations, and transmission
lines

L Labeling function

G Symbolizes a set of cells corresponding to a given
power system asset

si State of power system at k

22, z¢ Operational state of substations/transmission lines due
to operator action

25, 2¢ Operational state of equipments due to external input

wf*l, w?CJ Weights associated with critical and non-critical load
at node %

Pf{ © Power generation output at node 7 at time step k

APZ.C-Z, Critical and non-critical load removed from node 7

Appet

Ppt1 Set of decision variables of the operator

€ Minuscule positive bias

0;.% Voltage angle at node 7 at time step k

Pt{ iow Power flowing through line ¢ at time step k

zf, kil Current operating state of node

pien, pinaw Minimum and maximum power generation output at
node ¢

Rima® Maximum ramp rate of generating station at node ¢

vy Select node % for the power adjustment

AP? incremental setpoint adjustment (ramp)

ro Very large constant

Pé,k Available load demand at node 7 in time step k

a; Fraction of critical load at node

B Susceptance of line ¢

027’”'", omar Minimum and maximum values of voltage angles at
node ¢

D Markov decision problem

S, A State and action space for D

R Reward function for D

o Actor policy

o' Discount factor

Nsld Maximum servable load demand

Sy Fire simulator

Spm., Spr, Spys  Power simulator (Myopic transition), power simulator
(RL transition), Power simulator (Myopic-assist)

ag,oru(s) actor-network generated values

azl RL agent’s action

TR r,’;l Myopic reward, RL reward at time-step k

e RL-transition based power simulator’s Myopic reward

at time-step k

TABLE I: List of frequently used notations
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of cell = being ignited at k*" time step (i.e., dy = 1) is given
by (2).

0 if —di_ AN|HE| =0
pe=q1- HyeH; (1=P3,) if —df_; A[HE[>0 (2)
1 otherwise.

Here, Py denotes the probability of fire spreading from
cell y to x. For a given cell x, H{ is the set of topographical
neighboring cells that can contrlbute to the spreading of fire
(d} =1) to cell z in k" time step. The state of the whole
topographical grid s£ can be obtained by composing the state
of every cell, shown in (3).

where (1, ..., M) are M cells in the grid.

2) Topography to Topology Mapping: To facilitate under-
standing the impact of propagating wildfire on the power
system operation, the power system environment is geotagged
with the cell information. Note that the entire state of wildfire
is not necessary to capture this interaction, and a reduced set,
L(s}) = {(d},...,d}), is used in this regard. Topologically,
the power system can be represented as a collection of nodes,
N, representing generation and transmission substations, con-
nected through a set of transmission lines, 7. At a given time
step, for each node 7 € N and branch ¢ € T, given cell-
level fire propagation status obtained earlier, binary variables
zlf . and ztf «. indicate the operational status of substations and
transmission lines respectively and is captured using (4).

5 )0 if 3Jz e Gy st L(sf) # non-ignited

2k = . 4)
' 1 otherwise

Here set G,y symbolizes the cells corresponding to a given

power system asset. Nodes corresponding to the same substa-

tions, underground cables will also required to be appropriately

represented.

B. Power System Operation Model

Typically, an existing energy management system (EMS)
provides decision-support to the operator in solving traditional
multi-period scenario-based deterministic or stochastic opera-
tional optimization problem for the decision making. However,
as shown in Fig. 2, the system operator is a myopic entity
that actively seeks the recommendation of the RL-agent in
the decision-making in the wake of the disaster. The operator
also monitors the system state along with the system-wide
emergency condition. Since the applicability of the proposed
controller is limited to the wildfire time horizon, and the
operator is expected to return to economic mode following
expiration emergency conditions, the operating horizon of
the controller is finite. Operator actions can be divided into
two stages:

1) Topology Revision: It has been considered that the action
taken by the operator is based on the observation made at
the beginning of k" interval, or at k" time step. Here, the
operator receives the emergency responses from the wildfire
propagation testbed, given by z7, and z{, (see (4)), and first
deploys them faithfully. Consequently, the revised operational

status of a substation and transmission line for the k + 1"

time step becomes 27, = 27,27, and 27, = 27,27,
respectively (where = 1 denotes availability, and = 0 denotes
shut-off condition of the transmission assets).

2) Setpoint Update: Given the updated system topology
(zﬁ ky1 and zf x41). €Xisting power system state (52), and
partial generator control setpoints from the controller at k*"
time step, myopic operator determines the complete list of
setpoints of the generators and load shedding schedule while
aiming to minimize the value of the lost load at k 4 1! time
step. As indicated earlier, contrary to traditional economics-
driven power system operation, it has been considered that
the operator’s objective should be to minimize the value of
the shedded load at k 4 1** time step?, and such an objective
will remain in effect until the emergency condition is lifted.
The consequent problem to be solved is given as:

min Wi lAPZCkZJr
)
kot 1EN

— P9 )2
ik

&)
where ®j,; consists of the set of decision variables of
the operator that includes power generation outputs PZ kil
(without any loss of generality, all the generators at a given bus
are aggregated), operational state of generators group zf k1o
critical, non-critical loads shedded (APck 15 AP”C ll) nodal
angles 0; x11, of node ¢ € N along with line ﬁows Ptf ,l:fl,
through branch ¢ € T. Also, wé-, w*" (> 0) are the values
of critical and non-critical loads, respectlvely. The criticality
of the loads (hospitals, fire stations, police stations, etc., are
generally treated as critical loads) imposes the condition of
wCJ > w;w*l > 0 (V¢ € N). Here, we assume that the
generators are equipped with load rejection capabilities [28],
and thusly, the entirety of the generating fleet could be brought
offline, and consequent solution is a feasible solution. There-
fore, (5) is always expected to provide a feasible solution.
Overall state of the power system is captured by
{Prp1Uzlp g Uzipgah

Sole utilization of the value of load loss expression as
an objective may lead to the existence of multiple feasible
solutions with undesirable ramping of th% generators. Addition

of an expression ), (ng—&-l - P,fk)
minuscule positive bias of e inhibits such possibility, with
little to no impact on the original objective. Furthermore,
min w;" > € > 0. The objective function must be subject to

the following power system operation and safety constraints:

ne_l ne_l g
1wy Asz:+1+€(Pi,k:+1

D _
Sk+1 =

in the objective with

a) Generation Constraints: Finite generation capacity
(lower and upper limits given by P, P™9%  regpectively)
and ramping capabilities (given by R;"“%) limit the operability
of the generators. Here, 27, ., and 27 . ,, as discussed earlier
will provide nodal and line availability, respectively, which
will be utilized to revise operating limit of the generating
fleet. Furthermore, given the generators can suffer from forced
outages, the generator statuses are tracked using zi -

2The operator may also use a multi-period greedy algorithm to derive and
deploy set points for next time step.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, IN PRESS, ACCEPTED FOR PUBLICATION ON MARCH 21ST, 2023. 5

As a part of the load rejection capability®, when generators
face forced outages, their (down) ramping rate (see (8)) and
operating limit can be allowed to contravene (see (7)), subject
to the outaged generators will not be brought online without
a thorough safety check. For this paper, these generators
will remain outaged indefinitely (see (6)). To model such a
condition, the help of a large positive real constant, I'°, as
shown in (8) is sought. These conditions, along with revised
generating and ramping capability, are given in the following
equations. Here, Ak represents the power system operating
interval.

0< 2/, <22 ©)
SR AR v T M
m 0
_AkRma:r < ngJrl — Pz',k < AkR; 4T (1 Zf,k+1)
®)

b) Load Demand Constraints: The necessity of the de-
ployment of control action for generators at k*" time step to
ensure load-generation balance at (k -+ 1)!" time step requires
prediction of load demand. Available historical data, shown in
Fig. 2 (using brown arrows), can facilitate such computation.
However, the development of load prediction models is beyond
the scope of this paper and assumed to be given.

Limited availability of generation during the prevailing con-
tingencies necessitates demand curtailment. Suppose, Pfk 11
is the operator predicted load demand, then, following re-
moval of associated substation, updated load demand will
be 27y HPf;’,f 11- Additionally, «; is the parameter represent-
ing the critical load fraction (positive real number) served.
Auvailability of a large number of switchable loads within the
distribution network connected at the transmission substation
enables treating the sheddable loads as a continuous variable
[29]. Consequently, critical and non-critical sheddable loads
(APfkl 1 APzng +1) is bounded as follows:

0< Apfkl+1 < aisz+1Pé,k+1 &)
0< APzn1§+l1 (1- O‘i)zzq,k-ﬁ-lpé,k-&-l (10)

c) Load Flow Constraints: Since the typical operating
voltage within the power system remains close to 1.00 pu,
and the difference in the voltage angle of the adjacent buses is
tiny, we consider a DC power flow model [30]. An associated
mathematical expression is given in (12). Here, B; is the
element corresponding to the ¢*" branch in the imaginary part
of the nodal admittance matrix. Equation (11) represents the
nodal flow balance equation. Also, the set T% C T consists of
all the branches that are connected to node i. Here, ™" and
0™ are upper and lower bound of nodal angle, respectively.

3Generators are isolated from the bulk power system into a load-bank.
So, the generators become immediately invisible to the bulk power system
operators.

The power flow constraint is described in (14).

l fl
Pljn— P12 epr + AP k+1+ AP — ZPt K1 =
teT?
(1D
Pffllii—wl 2 k1Bt (0i k1 — 5 141) =0 (12)
gmin < 91 k1 < gmaz (13)
Zt k+1P7rLa3:flow Ptf]l;iul < Zt k+1Pmaacflow (14)

3) Power Flow Analysis: At the beginning of each time
step, the operator waits for the duration of Ak to calculate the
revised setpoints. A power flow analysis tool* has been utilized
to calculate slack-bus set-point in an effort to calculate system-
wide state. In actual deployment, it has been assumed that the
slack-bus generators are equipped with AGCs to ensure load-
generation balance, and as shown in the online deployment
part of Fig. 2, the correct system state can be directly obtained
from the real environment. It is notable that the delay in the
measurement of the state and deployment of the control action
is minuscule enough to account for.

III. MDP FORMULATION

In this proposed model, the power system operator is
myopic. As a result, the controller needs to consider future
trajectory of the wildfire propagation and provide an appropri-
ate control signal to the operator, facilitating prevention from
running into reliability related issues while maximizing the
value of load served. Given the probabilistic nature of wildfire
propagation and power system loads, the control problem is
formulated as a Markov decision process (MDP) problem. An
MDP is a tuple D = (S, A,P,R), where S is a finite state
space, A is a finite action space, P is the transition probability
function and R is the reward function. The agent chooses an
action from the possible action space to lead the system from
one state to another. For the given problem, these elements are
defined as follows:

States: The state s of the environment £ includes the
state of the fire model and the state of the power system
s€ = (L(s?),sP). Where, L(s') {0,1}M is the fire
status of each cell. The s? includes the status of each power
system component {0, 1}/71+IV1 the current set points of the
generators RIV'" and the load demand of each node RI™I.
The complete state space S is defined in (15).

S= {0,1M x{0,1}ITHIN x RIN""I
——

L(sT)(wildfire)

x RN (15)

sP (power system)

Actions: The agent adjusts the generation set points of each
generator based on the current state. So, the action space is

A = RVl where N9¢" C N is the set of nodes with
generation capabilities.
Transitions: An MDP evolves as a result of the

set of actions taken. The transition probability function,
P(Sk+1|k, ar) indicates that the action ay, at time step k in
state si will lead to the next state sg1. Here, the stochasticity
arises from the wildfire propagation model, changing load
demand and shutting off power system components because
of fire.

4AC power flow equations can be invoked here.
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Fig. 3: DRL-based agent’s learning model.

Reward Function: The reward function, 7 =
R(Sk,ak, Sp+1), indicates that the reward is receive
for taking action ay, in state sy to reach next state Sy .

re=—Y ((1 — 20,)PL + APT + AP,;‘;—Z) (16)
iEN

In (16), the expression (1 — z? k)Pli’k signifies the shed-
ded load demand following isolation of a substation, and
AP+ AP denotes aggregated critical and non-critical
load curtailment of substation i.

Policy: A policy function pu(s) specifies the action a to
be taken in state s. At every time step k, the agent selects
an action, ar = p(sg), based on the deployed policy. This
experiment aims to find an optimal policy that can maximize
the cumulative sum of expected rewards in each episode. The
optimal policy in the model are defined in (17), where n is
the finite number of steps in each episode.

n
w* = arg max,, E ZR(sk,ak,skH)
k=0

a7)

IV. DEEP REINFORCEMENT LEARNING BASED
PROACTIVE CONTROL

A standard reinforcement learning-based approach is con-
sidered to train the agent. The agent learns by iteratively
updating its policy p*, defined in (18), at every step k, where
~v € (0,1) is a temporal discount factor for infinite-horizon
future rewards.

(o]
p* = argmax, E ZW’C “ RSk Qs Skt1) (18)
k=0
As discussed earlier, a finite number of steps in an episode is
considered in the test environment as the episode finishes at
some point. In contrast, an infinite horizon with a temporal
discount factor, a standard RL approach, is considered for
training.

1) Training procedure overview: Fig. 3 shows the sim-
ulator’s state transition in each step. The Testbed includes
one fire simulator, S¢, and two power simulators, e.g., the
Power simulator (myopic transition), Sy, and the Power
simulator (RL transition), S,,. Both power simulators are
functionally the same; the power simulator S, transition
happens based on the fire impact on the power system, and
the power simulator .S, transition happens based on the fire
impact as well as the RL actions. The Testbed also creates
another instance, e.g., the Power simulator (myopic-assist),

vy replicate SP
, Tk RL Controller/Agent pm rm k+1
- S T P S
k+1°"k

sh st
k k

Power Simulator, Spm f f Power Simulator, Spr/

(Myopic transition) S k Sk (Myopic-assist)

Sprs, of Sy in every step after taking an RL action. Note that
the power simulator Sp,, is needed to calculate the custom
reward and the power simulator S, is needed to calculate
the servable load demand, described in the later sections, to
train the RL controller.

The RL controller collects fire information s£ at time step
k from the fire simulator Sy. The controller first observes
the Myopic transition based on the current fire impact on
the power simulator S, and collects the Myopic reward
ri'. Then the controller again observes the Myopic transition
on the replica power simulator instance S, based on the
current fire impact and collects the next state power system
information s}""; and the RL-transition based power simulator
Spr’s Myopic reward 7;™. Finally, the controller takes RL
action azl on the power simulator .Sy, collects the RL reward
rzl and the next state power system information s}, 41+ At this
point, the Testbed creates a replica instance of power simulator
Spr at state Serl, e.g., Sp to use it in the next state.

Note that the Myopic transition happens based on the impact
of the fire on the power system, and then the internal operator
adjusts the set points if a bus or branch is removed because of
the fire. The RL controller does not do anything in the case
of the Myopic transition but uses the transition information,
e.g., the reward and the next state information, to train itself.
Once the RL controller is trained, it only acts on the Power
simulator(RL transition) and Power simulator(myopic-assist)
of the deployed environment.

A. Processing State Information

As described in Section III, the dimension of the complete
state space is S = {0, 1}MHITIHINE 5 RINI 5 RNl In
practice, the number of cells M is far greater than the
number of substations |N| and transmission lines |T'| (i.e.,
M > |NUT)). So, instead of using the fire states of each cell,
we convert it into a “fire-distance metric” for each component
N UT. It calculates and observes the geographical distance
from the nearest ignited cell. This transformation reduces the
wildfire state space from {0,1}™ to RITI*INI. The reduced
state space S of the agent is given in (19):

S= {0, 1}|T|+|N‘ x RN IH2INIHIT (19)

Actually, the power system operator does not need to be
concerned about all the fire distances. It needs to take care of
only those fires that are close to the power system component.
Additionally, the learning can be ineffective if all the fire
distances from each component are fed to the neural network.
So, the operator only considers the fire distances that are
apart for a specific number of cells from the power system
components. If the considerable fire distance is Y, then the
converted fire distance d from each component N U T is
defined in (20).

d:{l—d/Y
0

Here, d = 0 means the component is safe for now, d=1
means that the fire has already reached the component, and

it d<Y

20
otherwise. 20)
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other components are vulnerable to the fire; whereas compo-
nents that are closer to 1 are highly vulnerable. This conversion
makes fire distances highly sensitive to the neural network and
helps fast learning. Now, the power system component status
needs not to be used separately. Additionally, the load demand
of a bus is constant throughout the whole episode if it does
not get fire. As d = 1 of a bus means the bus is shut off,
the load demand also needs not to be used as an input. The
final state space S that is fed to the neural network to train
the agent is defined in (21).

S = RINIHINIHIT Q21
Other input data, e.g., the generator’s current set point, are
also converted into the [0, 1] range.

B. Processing Action

1) Challenges: The power system has different constraints,
e.g., generation constraints, load demand constraints, and load
flow constraints described in Section II-B. The RL agent
needs to take action that satisfies all the constraints. But,
the untrained neural network outputs random actions at the
beginning, and the agent also adds noises in training for
exploration. Now, if there is an excess power generation that
cannot be served, it will shut off the pertained generators to
satisfy the constraints or incur load losses if there is lower
power generation. Once a generator gets shut off, it does not
turn on for the rest of the episode. It limits the exploration area
and makes it hard to learn. Again, the experiences are not very
helpful for learning if the action violates the constraints. The
most valuable experiences are those experiences in which the
taken action switches the power generation of generators but
does not incur any load loss or excess power generation.

2) Total Maximum Servable Load Demand: Myopic con-
trol, described in Section V-B1, always takes the best action
based on the current power system state without violating con-
straints but not considering the future. So, the agent can use the
Myopic control approach to calculate the maximum possible
power generation that can be served based on the current state
of the environment, satisfying all the constrained; this is called
maximum servable load demand, N*'%, throughout this paper.
If the RL action generates more power than the total N4,
it will violate the constraints and shut off the generator. So,
the RL agent must ensure the action never generates more
power than the total N5/ In Fig. 3, the agent takes a Myopic
action on the Power simulator(myopic-assist), which returns
the generation set points as next state information, s}"';.
The sum of these Myopic generation set points is the total
maximum servable load demand.

3) Normalization: As generating a lower amount of power
incurs load losses, the RL agent also tries to generate power
closer to the total N9 As described in section V-A, the
actor-network uses the “softmax” activation function, which
outputs values for all the generators that sum up to 1. The
actor-network suggested values, u(s), is transformed to the
actor-suggested generator’s set point, a”, by multiplying them
with the total N*!¢, defined in (22).

a” = p(s) x ZNS” (22)

But, there is a high chance that this actor-network suggested
generator’s set point a” values will violate the ramp limit or
other constraints. So, the agent calculates each generator’s
lower, [;, and upper bound, u;, based on generators current
set point P9, max ramp value R™%*, and maximum/minimum
power generation (P /P™i™) defined in (23) and (24).

l; = max { P/ — R"** P/™"} (23)
u; = min {P? + R]"**, P} (24)
Now, the agent normalizes the actor-network suggested gen-
erator’s output a” based on the lower and upper bound (26)

while ensuring that the total generation will be close to the
total N°!¢ but never exceeds (27). >

a = argmin,, Z(ai —al)? (25)

such that Vi: [; <a; <y (26)
Ngen Ngen

27

> a3 A
K2 K2

In this procedure, the RL agent switches power generation
from one generator to another but maintains the total power
generation closer to total N*/?. This approach does not guar-
antee to serve all the generated power all the time because of
load flow constraints. But, it definitely reduces the constraints
violations significantly.

4) Connected Components: The whole power system grid
can be disconnected into multiple parts because of fires. In
that case, the total N*'¢ and the generator’s set point need to
be calculated for each connected component separately based
on the actor-network outputs.

C. Custom Reward for Training

The reward is a negative value of incurred load losses
described in Section III. But, if a bus is shut off because
of fire, it will incur load losses at every step for the rest of
the episode, but that load losses are unrecoverable and not
helpful for learning. So, a custom reward is calculated for the
training based on the Myopic transition of the environment.
As mentioned earlier, in Fig. 3, the Power simulator (myopic-
transition) transition happens based on the impact of the fires,
whereas the Power simulator (RL transition) transition happens
based on RL action with the same fire impact. Based on the
returned rewards, we calculate the custom reward, r,rcl -y,
to train the agent. The custom reward also incentivizes the RL
agent to do better than the Myopic transition.

D. Training Procedure

Algorithm 1 shows the step-by-step sequence to train the
DRL agent. At the beginning of each episode, the Testbed
resets all of its simulators, initializing each and returning the
initial state. The transition of the current state s; to the next
state si4+1 happens when it takes action through the step()
method. The agent does not need the Myopic state information,
so the symbol ‘_* was used for simplicity.

5We used the Python scipy.optimize.minimize() method for this conversion.
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Algorithm 1 Training procedure

1: while non-converge do

2 sf; — Sy.reset()

3 _ 4 Spm.reset()

4 sh < Spr.reset()

5 Sprr <= Spr

6: Sk pre_processing(si, sh)

7 while k£ < max_step do

8 T Spm.step(si)

9 Sprqs TR 4= Spr.step(sy,)

10 ay + agent.actor(sy) >e.g. u(s)
11 ay! < post_processing(ay, s\

12: Sho T Spr-step(s], agl)

13: Sprt = Spr

14: TR — er —rg

15: 5£+1 — Sy.step()

16: Sk+1 pre_pr0€essing(s£+l, Shi1)

17: replay_buffer.add_record(sy, ag, T, Sk+1)
18: agent.D D PG (replay_buffer.get_batch())
19: end while

20: end while

The agent preprocesses state information in lines 6 and
16 to feed it into the actor neural networks. In lines 8 and
9, the agent observes the myopic transition of the power
simulators Sy, and Sy~ and collects the rewards and the
next state information. The next state information s}}'; is used
to determine the total N3¢, In line 10, the agent feeds the
preprocessed state information s to the actor neural network
to generate the actor-network suggested action ay. In line 11,
the agent calculates the RL action a}' based on the actor-
network generated values a; and the total N*!¢. In line 12,
the agent takes an RL action on the power simulator S,
and collects the next state information and the RL reward. In
line 13, the Testbed creates a replica instance of the power
simulator Sy,. In line 14, the agent calculates the custom
reward based on the myopic reward to train the neural network.

The agent stores the current experience (line 17) and uses
them to train the actor and the critic networks utilizing the
Deep Deterministic Policy Gradient (DDPG) [31] algorithm.
Interested readers are referred to the associated paper for the
details about the algorithm, as the algorithm has been closely
followed to train the agent.

V. SIMULATION RESULTS

A. Simulation Setup

A standard IEEE 24-bus reliability test system (RTS),
superimposed on a geospatial terrain, divided into a 350 x 350
grid, has been considered here for analysis. Power system
operational parameters can be obtained from [32]. Thereupon,
there are ten controllable power generators. The entire power
system control horizon is divided into time steps with a 5-
minute interval, where each episode consists of 300-time steps
corresponding to approximately one day.

For simplicity, the load demand within the power network
is considered to be deterministic in nature with constant

magnitude. As discussed, network-wide loads are comprised
of critical and non-critical fractions. This fraction also remains
constant throughout the network. The proposed controller
tracks spatio-temporal wildfire propagation and provides set
points for all generators. Successively, the power system
operator would solve the optimization problem to calculate and
deploy the complete set of requisite control actions based on
load forecasts. To determine the set points for the operator, the
SCIP solver in General Algebraic Modeling System (GAMS)
is utilized due to its versatility.

Fig. 4 shows the simulation progress of an example episode
with an interval of 50 steps. The west coast was chosen as
the geospatial terrain for the testbed. Each cell is categorized
based on the vegetation information (e.g., water, deep desert,
desert, low vegetation, land, and forest) and the amount
of fuel is defined respectively. Each episode starts with a
random wildfire origin within the geographical area. The fire
spreads over each step based on the predefined fire propagation
probability described in Section II-Al. A new wildfire may
also originate at a random time step at a random place. For
effective training, we set a boundary for the fire origins inside
the grid to ensure that the wildfire impacts the power system
assets.

The RL-based agent uses deep neural networks with two
hidden layers, consisting of 512 and 512 neurons for both the
actor and the critic networks. The actor-network uses rectified
linear activation function in the hidden layers and softmax
activation function in the output layer. The softmax activation
function ensures the total power generation is equal to the total
maximum servable load demand (described in Section IV-B2).
The critic-network also uses the rectified linear activation
function in the hidden layers, but a linear activation in the
output layer. The actor and critic learning rates are 0.001
and 0.002, respectively. The agent uses 0.005 to update the
target network and 0.9 as the discount factor to calculate the
expected return. The training period for the RL agent was ~ 14
days. The conventional multi-period optimization, described in
V-B3, uses an optimality gap of 0.00 or a maximum of 900
seconds to calculate the set points for a single step.

B. Control Approaches

In this experiment, three different control approaches are
considered, which are defined as follows:

1) Myopic control: As described in Section II-B2, the
operator observes the impact of wildfire on the power sys-
tem, estimates system wide-load demand, and considers de-
energization decision support from the controller to determine
the control input for the next time step.

2) Proactive control: In proactive control, the RL-based
external controller observes the progress of the fire and pro-
vides the set points for the entire generator fleet to the operator.
The operator is also expected to observe the impact of wildfire
on the power system, estimate system wide-load demand, and
account for external control input to calculate and deploy the
requisite control actions.

3) Conventional multi-period optimization:  Typically
power system operators solve rolling horizon optimization
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Fig. 4: Simulation progress of an example episode with an interval of 50 steps.

= 300 ’DDMyopic JoRL 2847 29982027

P []pers

\; 215.7201.6 225'2210'5

S 200

b=l

<

o 105.9

o 100 |—‘89-9

50

2]

b5 28.7 5y 7

> I:I

< 0 I I I I I I
-50%  -25% -10%  base +10% +25%

Fire propagation

Fig. 5: Average episodic load loss (MW) over 100 example
episodes for different fire propagation.

problems along with real-time load-generation balance. For
the rolling horizon problem, the set-points of the immediate
time step are generally enforceable, while the set-points for
subsequent time steps are generally used as an advisory
signal. In this regard, the operator significantly relies on the
forecast of fire propagation for decision-making. Under the
same paradigm, a pre-calculated original fire propagation
dataset is provided to the conventional multi-period optimizer
as forecast data. The Optimizer looks ahead at the required
number of time steps of fire propagation to calculate the
generation set-points.

C. Results

Worst 5% each step

Control approaches . .
PP computation time (seconds)

Total load loss (MW)

RL 21,048 =~ 0.136

Myopic 22,518 =~ 0.128

Convemlo'naI. ml}llu—perlod 16,500 > 900
optimization

TABLE II: Test results have been calculated using 100 episodes.
Here, the conventional multi-period optimization test result is based
on perfect fire prediction (using a pre-calculated dataset), which
is unrealistic. Still, we calculate this to find the theoretically best
possible result given the fire impact on the power system.

Table II shows that the RL agent does substantially better
in reducing the load losses than the Myopic agent. Although
Conventional multi-period optimization has lower load losses,
it takes a long time to converge in critical situations. The
external operator cannot bear this long time. The computation

T

; 6l —=— Myopic N
~ 4| —— RL |
ke
9 2| R
<
S

0 L | | | | | | | i

0 50 100 150 200 250 30

Step

Fig. 6: Step-by-step load losses over an example episode shows
the improvement of the RL agent’s action.

time for the RL agent is slightly higher than the Myopic con-
trol approach. However, the computation time for both agents
is negligible to make suggestions to the external operator as
each step is equivalent to 5 minutes interval. So, the higher
computation time for the RL agent is not significant here.

Fire propagation can be different based on different geo-
graphical dynamics. Fig. 5 shows that the trained agent can
take good actions regardless of different fire propagation. The
RL agent does not require retraining for differently propagated
fire. On the other hand, the RL agent needed higher fire
propagation for effective training, as a lower-propagated fire
may not interact with the power system in some episodes.
The test result indicates that the performance is even better
with a lower fire propagation than the originally trained fire
propagation. While the improvement is around 6.5% with
the same trained fire propagation, it is around 24.4% with
50% less fire propagation and 15.1% with 25% less fire
propagation. The RL agent also does substantially better if the
fire propagation is even higher than the originally trained fire
propagation. The figure also shows that lower fire propagation
has lower total load losses as the impact on the power system
is also lower.

Figure 6 shows how the RL agent’s action reduces the load
losses over the Myopic action. The fire removes a branch at
step 180, which imbalances power generation and load demand
for the Myopic control at some regions of the power system.
The RL agent adjusted the power generation, proactively
predicting the line removal based on the fire progress. The
power system for the Myopic control reduces the load loss over
the next couple of steps by adjusting the power generations
based on ramp limits. At step 193, a separate fire removes
a node that adds load losses for both controllers. Note that
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the generator of that node generates more power than the
load demand of that node. The RL agent adjusted the power
generation proactively, so the load loss was only the load
demand of that node. But, for the Myopic control, the load
loss was the total power generation. At step 231, the first fire
removes another branch that separates a region from the power
system. The figure also shows the weakness of the Myopic
control approach and the scope of the improvement for a
proactive control approach.

VI. CONCLUSIONS

This work developed a deep reinforcement learning (DRL)
based proactive intelligent control to supplement decision
support for industrial power grid operators given a wild-
fire event. The testbed has been developed by integrating
a wildfire-propagation model with a power-system operation
model to train and validate a controller that can supplement
traditional computationally-intensive, forecast-driven power-
system operations during a wildfire. The control problem is
formulated as a Markov decision process. The innovative
compact representation of observations and actions processing
ensures efficient training. Numerical results indicate that the
DRL-based proactive control agent can reduce the load loss,
which is also robust regarding different fire propagation.

The computationally inefficient conventional multi-period
optimization test result using perfect fire forecast is better than
the RL test result, if enough time is available. So, theoretically,
it is possible to have better results than presented result in
this work using some other RL approaches, which will be
our future work. We believe that this RL-based approach will
spur innovative research in applying Al in the power system
to help the industrial operator make decisions during a disaster
in timely manner.
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