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17.1 Introduction

Wildfires are global phenomena that pose a huge threat to our way of

life (Fig. 17.1). With rising temperatures across the globe, towering infernos

of seemingly apocalyptic proportions have been ravaging our forests. From

the Amazon forest in Brazil to Canada and the United States in the American

continents, to Greece and the UK in the European continent, and all the

way to Australia, extreme wildfires are causing enormous economic and

human losses and vastly damaging ecosystems. These impacts are felt not

only in the immediate surroundings but for hundreds of miles. Smoke

and ash travel long distances and cause orange skies and terrible air quality,

like in Northern California in 2020 [1] and New York in 2023 [2], affecting

humans and animals alike. Owing to global warming, fire seasons are

becoming longer and starting earlier. Globally the length of the wildfire sea-

son had grown by nearly 19% between 1978 and 2013 [3]. The general trend

over the years can be seen in Fig. 17.2.

In January 2017, a highly destructive series of wildfires destroyed more

than 500,000ha in Chile. In June 2020, the Brazilian National Institute for

Space Research detected 103,000 wildfires in the Brazilian Amazon with an

annual increase of 16%. In 2019, the economic damage of wildfires was esti-

mated at circa US$3.5 trillion for the Brazilian economy [4].
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The UK spends around £55m a year on fighting wildfires. Worldwide,

an area equivalent to about 20 times the size of Great Britain is burnt by

wildfires on average each year. By July 2018, the area burned in the UK that

year was more than four times the average of the past decade [3]. In the

United States, losses from the fires of 2018 in California are estimated at a

record US$19 billion, making it the worst fire season in history. Of the

10 largest wildfires in California’s history, eight have occurred since

2001 [5].

In the United States, 1289 large wildfires (fires that burn a minimum of

100 acres in timber fuel models or 300 acres in grass and brush fuel models, as

defined by the National Mobilization Guide) were reported in 2022, which
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Fig. 17.2 Wildfires over the years.

Fig. 17.1 Firefighter fighting a wildfire. (Courtesy: Fabian Jones on Unsplash.)
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represented less than 2% of total wildfires reported nationally that year. There

were 68,988 reported wildfires that consumed 7,577,183 acres in 2022 and

58,985 reported wildfires that consumed 7,125,643 acres in 2021 across the

country (as shown in 1.3), which accounted for over $11.2 billion in damage

[6,7] (Fig. 17.3).

Western United States, like the states of California, Nevada, and Arizona,

face long stretches of arid climate with little rain, making them especially

susceptible to wildfires. Statistics for the top 10 states for wildfires in 2021

have been provided in Table 17.1.

According to California’s fire suppression agency, CalFire, prolonged

periods of high temperatures and drought, record high winds and lightning

storms, the significant buildup of dry fuel, and continued development in the

wildland-urban interface are the main contributors to increasing the number

of wildfires. Though a large number of wildfires are caused by nature, the

majority of them have originated from human-related ignition sources such

as arson, vehicles, outdoor activities, and transmission lines [9], as can be seen

in Table 17.2.

As global temperatures continue to rise, it will have a significant impact

on the frequency and intensity of catastrophic wildfires, creating a new norm

that critical system operators will need to plan for. Proactive operational and

investment planning against such disastrous and highly unpredictable events

will require supporting and enabling policy and regulatory frameworks to

incentivize operational and investment planning toward resilient infrastruc-

ture. Along with the physical impacts on critical infrastructure and the

responses from network operators, planners, regulators, and policymakers,

it is imperative to devise a set of prevention, mitigation, and adaptation mea-

sures aimed to hedge the risks of these wildfires.

According to the United Nations, artificial intelligence (AI)-based tech-

nologies, such as simulators, weather prediction models, autonomous sys-

tems, and the likes, will provide safer and efficient defenses against the

exponential rise in the number of wildfires. The U.S. Forest Service is cur-

rently working toward using drone technology that can not only spot fires

but also set controlled fires to barricade the spreading fire by cutting off its

path to the vegetation that fuels it. The USDA Forest Service Missoula Fire

Sciences Laboratory and the Colorado Division of Fire Prevention and

Control use advanced visualization and virtual-world simulation platforms

to forecast the progress of a wildfire, thereby helping governmental agencies

ascertain where to direct resources to protect their citizens [10]. Integrating

different types of robots along with drones into the firefighting plan can assist

in transporting equipment, evacuating the wounded, as well as intervening
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close to the danger to protect their human counterparts. The LA Fire

Department developed and implemented a drone program, integrated a

firefighting robot, and purchased an electric fire engine since the devastating

fires of 2020 [11].

Fig. 17.3 Wildfires reported in the United States in 2021 and 2022.
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A real-time modeling and predictive analysis tool, known as WIFIRE,

that uses live data from a public network of more than 1000 high-definition,

pan-tilt-zoom cameras positioned across the state of California, and factors

in dynamic changes in wind, moisture, terrain, and other constituents, was

developed by scientists at the University of California, San Diego. It is part of

Fire Integrated Real-Time Intelligence System (FIRIS), a public-private

partnership in California that also uses an aerial infra-red platform for

real-time information from an active wildfire, which sends a prescriptive

analysis to frontline teams, as well as to a publicly accessible website called

Firemap [12]. In Turkey, an interactive wildfire risk map was developed as

part of a pilot program that leverages AI and machine learning (ML) algo-

rithms on multiple data sources, including historical, meteorological, and

geographical data, along with inputs from a global community of experts.

Table 17.2 Top 10 most destructive California wildfires as of October 2022 [8].
Rank Fire name Cause Date Acres Deaths

1 Camp Fire Power lines November 2018 153,336 85
2 Tubbs Electrical October 2017 36,807 22
3 Tunnel—Oakland

Hills
Rekindle October 1991 1600 25

4 Cedar Human related October 2003 273,246 15
5 North Complex Lightning August 2020 318,935 15
6 Valley Electrical September 2015 76,067 4
7 Witch Power lines October 2007 197,990 2
8 Woolsey Electrical November 2018 96,949 3
9 Carr Human related July 2018 229,651 8
10 Glass Undetermined September 2020 67,484 0

Table 17.1 States ranked by number of fires and number of acres burned in 2021 [8].
Rank State No. of fires Rank State Acres burned

1 California 9260 1 California 2,233,666
2 Texas 5576 2 Oregon 828,777
3 North Carolina 5151 3 Montana 747,678
4 Montana 2573 4 Washington 674,222
5 Florida 2262 5 Arizona 524,428
6 Oregon 2202 6 Idaho 439,600
7 Georgia 2139 7 Alaska 253,357
8 Minnesota 2065 8 Texas 168,258
9 Washington 1863 9 Kansas 163,982
10 Arizona 1773 10 New Mexico 123,792
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It was successfully implemented with an 80% accuracy rate in predicting

wildfires 24h before their outbreak [11,13].

By empowering detection specialists with enhanced visualization and

rapid data analysis powered by AI, it will be possible to quickly identify and

contain devastating wildfires, thereby protecting human lives, property, as

well as wild animals and their habitats. This chapter focuses on the effect of

fires on power networks, the mitigation plans developed by utilities to

lessen the impact, and new AI-based techniques being developed by

researchers for enhanced situational awareness and improved resiliency

of the power grid.

17.2 Impact of wildfires on power systems

Critical infrastructures, like the power grid, are extremely vulnera-

ble to wildfires. High-voltage lines influence wildfire risk by both causing

them and being devastatingly affected by a passing wildfire, influencing

risk to communities. Accidental wildfire ignitions caused by overhead

lines involve an electrical fault resulting from a combination of wind

and/or a foreign object (e.g., tree, wildlife, and so on) interacting with

them. During high wind days with elevated temperatures, which cause

lines to sag due to thermal expansion, if two conductors make contact,

allowing current to flow between them, the power lines can be heated

to the point of melting, and molten droplets of conductor material may

then be ejected and ignite fine fuels if the conditions are conducive to

a wildfire. Toppled trees or large broken branches can even break power

lines, causing them to fall to the ground and ignite vegetation from the

electrical discharge. Less forceful vegetation interactions, such as a tree

leaning on a power line or a branch laying across conductors, may provide

a path for electrical current to flow through and ignite the vegetation,

thereby starting a fire. Another ignition method for wildfires is trans-

former oil fires and explosions, which are typically a consequence of elec-

trical faults due to lightning, high wind, weather, or interactions with trees

[14] (Fig. 17.4).

An increase in temperature does not affect every component associated

with power grids, causing a decrease in efficiency. In case of natural-gas

power plants, for every degree above 15°C, the nameplate capacity of

open-cycle natural-gas-fired power plants decreases by 1.0% and that of

398 Paroma Chatterjee et al.



Remainder of this chapter is available from Elsevier: 
https://doi.org/10.1016/B978-0-443-21524-7.00005-0 
 

https://doi.org/10.1016/B978-0-443-21524-7.00005-0


The conventional multiperiod optimization method is based on perfect fire

prediction by using a precalculated dataset, which is unrealistic but yields the

best possible result, theoretically, given the fire impact on the power system.

17.5 Conclusion and future work

As climate change aids the increase in peak demands, while increasing

the likelihood of wildfires, utility companies are being required to anticipate

such changes and develop methods to harden the existing infrastructure and

set up additional system capacity to offset this impact. Addressing wildfire

risks requires enhanced designing, construction, operation, and mainte-

nance of power systems, which enhances the safety of the system and makes

it resilient during extreme events. These measures also improve fire agencies’

ability to detect and accelerate response to emerging fires.

As wildfires combine complex meteorological scenarios, complicated

topography, and complex fuel structures, their behavior is quite hard to pre-

dict and modeling becomes computationally challenging. Many research

efforts have been conducted in order to monitor, predict, and prevent wild-

fires using AI techniques and strategies such as ML and remote sensing.

The testbed we developed by integrating a wildfire-propagation model

with a power-system operation model was used to train and validate a DRL-

based controller that can supplement traditional computationally intensive,

forecast-driven power grid operations during wildfires. The proactive con-

trol agent was able to reduce the load loss and was also robust against differ-

ent fire propagation scenarios. We plan to integrate state-of-the-art fire

simulation models into our testbed with a more detailed proactive power

control agent based on advanced DRL models for improved grid resilience.

The ultimate goal is to leverage ML to predict wildfire danger and propa-

gation with high confidence in fire-prone parts of the world and explainable

AI to identify the contribution of different variables and pave the way for

robust and trustworthy safeguards against wildfires.
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