
Designing Secure Ethereum Smart Contracts:  
A Finite State Machine Based Approach

Anastasia Mavridou1 and Aron Laszka2


1 Vanderbilt University

2 University of Houston



2



Smart Contract Insecurity

• Smart contracts are riddled with bugs and security vulnerabilities 
• A recent automated analysis of 19,336 Ethereum contracts 

• 8,333 contracts suffer from at least one security issue
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Security Vulnerabilities are a Serious Issue

• Smart contracts handle financial assets of significant value 
• Value held by Ethereum contracts is 12,205,706 ETH or $10B 

• Smart contract bugs cannot be patched 
• Once a contract is deployed, its code cannot be changed 

• Blockchain transactions cannot be rolled back 
• Once a malicious transaction is recorded it cannot be removed 

• Well… actually…  
• It can be rolled back with a hard fork of the blockchain
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Common Vulnerabilities

• Examples of common vulnerabilities [1] 
• Reentrancy  
• Transaction-Ordering Dependency
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Reentrancy

• In Ethereum, when there is a function call 
• The caller has to wait for the call to finish 
• A malicious callee might take advantage of this

Bank
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The pseudo-random number is then computed by combining the secrets of all
participants [18, 19]. Also in this case an adversary could bias the outcome by
not revealing her secret: however, doing so would result in losing her deposit.
The protocol can then set the amount of the deposit so that not revealing the
secret is an irrational strategy.

Time constraints. A wide range of applications use time constraints in order
to determine which actions are permitted (or mandatory) in the current state.
Typically, time constraints are implemented by using block timestamps, which
are agreed upon by all the miners.

Contracts can retrieve the timestamp in which the block was mined; all the
transactions within a block share the same timestamp. This guarantees the co-
herence with the state of the contract after the execution, but it may also expose
a contract to attacks, since the miner who creates the new block can choose the
timestamp with a certain degree of arbitrariness14. If a miner holds a stake on
a contract, he could gain an advantage by choosing a suitable timestamp for a
block he is mining. In Section 4.5 we show an attack exploiting this vulnerability.

4 Attacks

We now illustrate some attacks — many of which inspired to real use cases —
which exploit the vulnerabilities presented in Section 3.

4.1 The DAO attack

The DAO [23] was a contract implementing a crowd-funding platform, which
raised ⇠ $150M before being attacked on June 18th, 2016 [4]. An attacker
managed to put ⇠ $60M under her control, until the hard-fork of the blockchain
nullified the e↵ects of the transactions involved in the attack.

We now present a simplified version of the DAO, which shares some of the vul-
nerabilities of the original one. We then show two attacks which exploit them15.

1 contract SimpleDAO {

2 mapping (address => uint) public credit;

3 function donate(address to){credit[to] += msg.value;}

4 function queryCredit(address to) returns (uint){

5 return credit[to];

6 }

7 function withdraw(uint amount) {

8 if (credit[msg.sender]>= amount) {

9 msg.sender.call.value(amount)();

10 credit[msg.sender]-=amount;

11 }}}

SimpleDAO allows participants to donate ether to fund contracts at their choice.
Contracts can then withdraw their funds.

Attack #1. This attack, which is similar to the one used on the actual DAO,
allows the adversary to steal all the ether from the SimpleDAO. The first step of
the attack is to publish the contract Mallory.

14 The tolerance in the choice of the timestamp was ⇠900 seconds in a previous version
of the protocol [3], but currently it has been reduced to a few seconds.

15 This code works until Solidity v0.4.2. From there on, some changes to the syntax
are needed as shown in co2.unica.it/ethereum/doc/attacks.html#simpledao.
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1 contract Mallory {

2 SimpleDAO public dao = SimpleDAO(0x354...);

3 address owner;

4 function Mallory(){owner = msg.sender; }

5 function() { dao.withdraw(dao.queryCredit(this)); }

6 function getJackpot(){ owner.send(this.balance); }

7 }

Then, the adversary donates some ether for Mallory, and invokes Mallory’s
fallback. The fallback function invokes withdraw, which transfers the ether to
Mallory. Now, the function call used to this purpose has the side e↵ect of in-
voking Mallory’s fallback again (line 5), which maliciously calls back withdraw.
Note that withdraw has been interrupted before it could update the credit

field: hence, the check at line 8 succeeds again. Consequently, the DAO sends
the credit to Mallory for the second time, and invokes her fallback again, and so
on in a loop, until one of the following events occur: (i) the gas is exhausted, or
(ii) the call stack is full, or (iii) the balance of DAO becomes zero. The overall
e↵ect of the attack is that, with a series of these attacks, the adversary can steal
all the ether from the DAO. Note that the adversary can delay the out-of-gas
exception by providing more gas in the originating transaction, because the call
at line 9 does not specify a gas limit.

Attack #2. Also our second attack allows an adversary to steal all the ether
from SimpleDAO, but it only need two calls to the fallback function. The first step
is to publish Mallory2, providing it with a small amount of ether (e.g., 1wei).
Then, the adversary invokes attack to donate 1wei to herself, and subsequently
withdraws it. The function withdraw checks that the user credit is enough, and
if so it transfers the ether to Mallory2.

1 contract Mallory2 {

2 SimpleDAO public dao = SimpleDAO(0x818EA...);

3 address owner; bool performAttack = true;

4

5 function Mallory2(){ owner = msg.sender; }

6

7 function attack() {

8 dao.donate.value(1)(this);

9 dao.withdraw(1);

10 }

1 function() {

2 if (performAttack) {

3 performAttack = false;

4 dao.withdraw(1);

5 }}

6

7 function getJackpot(){

8 dao.withdraw(dao.balance);

9 owner.send(this.balance);

10 }}

As in the previous attack, call invokes Mallory2’s fallback, which in turn calls
back withdraw. Also in this casewithdraw is interrupted before updating the
credit: hence, the check at line 8 succeeds again. Consequently, the DAO sends
1wei to Mallory2 for the second time, and invokes her fallback again. However
this time the fallback does nothing, and the nested calls begin to close. The
e↵ect is that Mallory2’s credit is updated twice: the first time to zero, and
the second one to (2256� 1)wei, because of the underflow. To finalise the attack,
Mallory2 invokes getJackpot, which steals all the ether from SimpleDAO, and
transfers it to Mallory2’s owner.

Both attacks were possible because SimpleDAO sends the specified amount of
ether before decreasing the credit. Overall, the attacks exploit the “call to the
unknown”, and “reentrancy” vulnerabilities. The first attack is more e↵ective
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Transaction Ordering Dependency

• Also known as unpredictable state vulnerability 
• The order of execution of function calls cannot be predicted 
• No prior knowledge of a contract’s state during call execution
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Our Motivation

• Vulnerabilities often arise due to the semantic gap 
• The assumptions developers make about execution semantics 
• The actual semantics  

• Prior work: 
• Tools for identifying existing vulnerabilities 
• Tools for static analysis 
• Design patterns, e.g., Checks-Effects-Interactions 

• We explore a different avenue 
• We want to help developers to create secure smart contracts 
• Correctness-by-design 
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Our Approach - Model Based Design

• We introduce a formal, transition-based language for smart contracts 

• A Smart Contract is a tuple  
•    is a finite set of states 
•           is the initial state 
•         and     are finite sets of contract, input, and output variables 
•                              Is a  transition relation 

•   Is a set of guards and     is a set of action sets 

A. Mavridou, 2017

Components
0: input(m,n>0);  
1: while(m != n){ 
2:  if (m > n) 
3:    m = m - n; 
4:  else //m < n 
5:    n = n - m; 
6: } 
7: //m=n=gcd(m,n)

• Taking a transition 
1. is allowed if the guard evaluates to true 

2. executes the action 

3. updates current state

19
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• A contract can be naturally represented by a transition system
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Fig. 1. Example FSM for blinded auctions.

the end of the bidding period, if the associated guard now >= creationTime

+ 5 days evaluates to true. To di↵erentiate transition names from guards, we
use square brackets for the latter. A bidder can reveal her bids by executing
the reveal transition. The finish transition signals the completion of the auc-
tion, while the cancelABB and cancelRB transitions signal the cancellation of
the auction. Finally, the unbid and withdraw transitions can be executed by
the bidders to withdraw their deposits. For ease of presentation, we omit from
Figure 1 the actions that correspond to each transition. For instance, during the
execution of the withdraw transition, the following action is performed amount

= pendingReturns[msg.sender].
Guards are based on a set of variables, e.g., creationTime, values, and

actions are also based on a set of variables, e.g., amount. These variable sets
store data, that can be of type:
– contract data, which is stored within the contract;
– input data, which is received as transition input;
– output data, which is returned as transition output.

We denote by C, I, and O the three sets of the contract, input, and output
variables of a smart contract. We additionally denote:

B[C, I] , the set of Boolean predicates on contract and input variables;

E[C, I,O] , the set of statements that can be defined by the full Solidity syntax.

Notice that E[C, I,O] represents the set of actions of all transitions. Next, we
formally define a contract as an FSM.

Definition 1. A Smart Contract is a tuple (S, s0, C, I, O,!), where:
– S is a finite set of states;

– s0 2 S is the initial state;

– C, I, and O are disjoint finite sets of, respectively, contract, input, and

output variables;

– !✓ S ⇥ G ⇥ F ⇥ S is a transition relation, where:

• G = B[C, I] is a set of guards;

• F is a set of action sets, i.e., a set of all ordered powersets of E[C, I,O]
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+ 5 days evaluates to true. To di↵erentiate transition names from guards, we
use square brackets for the latter. A bidder can reveal her bids by executing
the reveal transition. The finish transition signals the completion of the auc-
tion, while the cancelABB and cancelRB transitions signal the cancellation of
the auction. Finally, the unbid and withdraw transitions can be executed by
the bidders to withdraw their deposits. For ease of presentation, we omit from
Figure 1 the actions that correspond to each transition. For instance, during the
execution of the withdraw transition, the following action is performed amount

= pendingReturns[msg.sender].
Guards are based on a set of variables, e.g., creationTime, values, and

actions are also based on a set of variables, e.g., amount. These variable sets
store data, that can be of type:
– contract data, which is stored within the contract;
– input data, which is received as transition input;
– output data, which is returned as transition output.

We denote by C, I, and O the three sets of the contract, input, and output
variables of a smart contract. We additionally denote:

B[C, I] , the set of Boolean predicates on contract and input variables;

E[C, I,O] , the set of statements that can be defined by the full Solidity syntax.

Notice that E[C, I,O] represents the set of actions of all transitions. Next, we
formally define a contract as an FSM.

Definition 1. A Smart Contract is a tuple (S, s0, C, I, O,!), where:
– S is a finite set of states;

– s0 2 S is the initial state;

– C, I, and O are disjoint finite sets of, respectively, contract, input, and

output variables;
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Example: 
Blind Auction Contract as a Transition System
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Our Approach - Model Based Design

• Advantages 
• High-level model → adequate level of abstraction 
• Rigorous semantics → amenable to formal verification 
• Code generation from transition systems to Solidity code 
• Plugins that implement security features and design patterns
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Common Vulnerabilities and Design Patterns

• Examples of common vulnerabilities [1] 
• Reentrancy  
• Transaction-Ordering Dependency 

• Most common design patterns [2] 
• Authorization 
• Time constraints

[1] Luu, Loi, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 
"Making smart contracts smarter." ACM CCS, 2016.

[2] Bartoletti, Massimo, and Livio Pompianu. "An empirical analysis of smart 
contracts: platforms, applications, and design patterns." TSC in FC, 2017.

16



Examples of FSolidM Plugins

• Locking                   

10 Anastasia Mavridou and Aron Laszka

5 Security Extensions and Patterns

Building on the FSM model and the FSM-to-Solidity transformation introduced
in the previous sections, we next provide extensions and patterns for enhancing
the security and functionality of contracts. These extensions and patterns are im-
plemented as plugins, which are appended to the Plugins and TransitionPlugins

elements. Developers can easily add plugins to a contract (or some of its transi-
tions) using our tool, without writing code manually.8

5.1 Locking

To prevent reentrancy vulnerabilities, we provide a security plugin for locking
the smart contract. 9 The locking feature eliminates reentrancy vulnerabilities
in a “foolproof” manner: functions within the contract cannot be nested within
each other in any way.

Implementation If the locking plugin is enabled, then

Plugins += bool private locked = false;

modifier locking {
require(!locked);

locked = true;

_;

locked = false;

}

and for every transition t,

TransitionPlugins(t) += locking

Before a transition is executed, the lockingmodifier first checks if the contract is
locked. If it is not locked, then the modifier locks it, executes the transition, and
unlocks it after the transition has finished. Note that the locking plugin must be
applied before the other plugins so that it can prevent reentrancy vulnerabilities
in the other plugins. Our tool always applies plugins in the correct order.

5.2 Transition Counter

Recall from Section 2.1 that the state and the values of the variables stored in an
Ethereum contract may be unpredictable: when a user invokes a function (i.e.,

8 Please note that we introduce an additional plugin in Appendix B, which we omitted
from the main text due to lack of space.

9
http://solidity.readthedocs.io/en/develop/contracts.html?highlight=

mutex#function-modifiers
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transition in an FSM), she cannot be sure that the contract does not change in
some way before the function is actually executed. This issue has been referred
to as “transaction-ordering dependence” [6] and “unpredictable state” [13], and
it can lead to various security issues. Furthermore, it is rather di�cult to prevent
since multiple users may invoke functions at the same time, and these function
invocations might be executed in any order.

We provide a plugin that can prevent unpredictable-state vulnerabilities by
enforcing a strict ordering on function executions. The plugin expects a transition
number in every function as a parameter (i.e., as a transition input variable) and
ensures that the number is incremented by one for each function execution. As
a result, when a user invokes a function with the next transition number in
sequence, she can be sure that the function is executed before any other state
changes can take place (or that the function is not executed).

Implementation If the transition counter plugin is enabled, then

Plugins += uint private transitionCounter = 0;

modifier transitionCounting(uint nextTransitionNumber) {
require(nextTransitionNumber == transitionCounter);

transitionCounter += 1;

_;

}

and for every transition t,

TransitionPlugins(t) += transitionCounting(nextTransitionNumber)

Note that due to the inclusion of the above modifier, tinput—and hence the pa-
rameter list of every function implementing a transition— includes the parameter
nextTransitionNumber of type uint.

5.3 Automatic Timed Transitions

Next, we provide a plugin for implementing time-constraint patterns. We first
need to extend our FSM model: a Smart Contract with Timed Transitions is a
tuple C = (S, s0, C, I, O,!,

T!), where
T!✓ S ⇥ G

T

⇥ N ⇥ F
T

⇥ S is a timed
transition relation such that
– G

T

= B[C] is a set of guards (without any input data),
– N is the set of natural numbers, which is used to specify the time of the

transition in seconds,
– F

T

is a set of action sets, i.e., a set of all ordered powerset of E[C].
Notice that timed transitions are similar to non-timed transitions, but 1) their
guards and assignments do not use input or output data and 2) they include a
number specifying the transition time.

• Reentrancy • Transaction-Ordering Dependency
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transition in an FSM), she cannot be sure that the contract does not change in
some way before the function is actually executed. This issue has been referred
to as “transaction-ordering dependence” [6] and “unpredictable state” [13], and
it can lead to various security issues. Furthermore, it is rather di�cult to prevent
since multiple users may invoke functions at the same time, and these function
invocations might be executed in any order.

We provide a plugin that can prevent unpredictable-state vulnerabilities by
enforcing a strict ordering on function executions. The plugin expects a transition
number in every function as a parameter (i.e., as a transition input variable) and
ensures that the number is incremented by one for each function execution. As
a result, when a user invokes a function with the next transition number in
sequence, she can be sure that the function is executed before any other state
changes can take place (or that the function is not executed).

Implementation If the transition counter plugin is enabled, then

Plugins += uint private transitionCounter = 0;

modifier transitionCounting(uint nextTransitionNumber) {
require(nextTransitionNumber == transitionCounter);

transitionCounter += 1;

_;

}

and for every transition t,

TransitionPlugins(t) += transitionCounting(nextTransitionNumber)

Note that due to the inclusion of the above modifier, tinput—and hence the pa-
rameter list of every function implementing a transition— includes the parameter
nextTransitionNumber of type uint.

5.3 Automatic Timed Transitions

Next, we provide a plugin for implementing time-constraint patterns. We first
need to extend our FSM model: a Smart Contract with Timed Transitions is a
tuple C = (S, s0, C, I, O,!,

T!), where
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T

⇥ S is a timed
transition relation such that
– G

T

= B[C] is a set of guards (without any input data),
– N is the set of natural numbers, which is used to specify the time of the

transition in seconds,
– F

T

is a set of action sets, i.e., a set of all ordered powerset of E[C].
Notice that timed transitions are similar to non-timed transitions, but 1) their
guards and assignments do not use input or output data and 2) they include a
number specifying the transition time.

• Reentrancy • Transaction-Ordering Dependency
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Ongoing Work on Verification
• NuSMV model checker to verify 

• Safety properties  
• e.g., a faulty state should not be reached 

• Deadlock freedom 
• Liveness properties  

• e.g., a state of the system will be eventually reached
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• e.g., a faulty state should not be reached 

• Deadlock freedom 
• Liveness properties  

• e.g., a state of the system will be eventually reached

20

Deadlock freedom  

AG (close → AG !bid) 

AG (withdraw →  

AX A [!withdraw W subtract]) 



Discussion

• Formal model, clear semantics, easy-to-use graphical editor 
• Decreasing the semantic gap 

• Rigorous semantics 
• Amenable to analysis and verification 

• Code generation + functionality and security plugins 
• Minimal amount of error-prone manual coding 

• FSolidM source code: http://github.com/anmavrid/smart-contracts 
• FSolidM also available at: http://cps-vo.org/group/SmartContracts 

Thank you!
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