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Abstract—Learning enabled components (LECs) trained us-
ing data-driven algorithms are increasingly being used in au-
tonomous robots commonly found in factories, hospitals, and
educational laboratories. However, these LECs do not provide
any safety guarantees, and testing them is challenging. In this
paper, we introduce a framework that performs weighted simplex
strategy based supervised safety control, resource management
and confidence estimation of autonomous robots. Specifically, we
describe two weighted simplex strategies: (a) simple weighted
simplex strategy (SW-Simplex) that computes a weighted con-
troller output by comparing the decisions between a safety
supervisor and an LEC, and (b) a context-sensitive weighted
simplex strategy (CSW-Simplex) that computes a context-aware
weighted controller output. We use reinforcement learning to
learn the contextual weights. We also introduce a system monitor
that uses the current state information and a Bayesian network
model learned from past data to estimate the probability of the
robotic system staying in the safe working region. To aid resource
constrained robots in performing complex computations of these
weighted simplex strategies, we describe a resource manager
that offloads tasks to an available fog nodes. The paper also
describes a hardware testbed called DeepNNCar, which is a low
cost resource-constrained RC car, built to perform autonomous
driving. Using the hardware, we show that both SW-Simplex and
CSW-Simplex have 40% and 60% fewer safety violations, while
demonstrating higher optimized speed during indoor driving
(∼ 0.40m/s) than the original system (using only LECs).

Index Terms—Autonomous Robots, LEC, Convolutional Neu-
ral Networks, Simplex Architecture, Reinforcement Learning.

I. INTRODUCTION

Autonomous systems are ubiquitously being used in trans-
portation (self-driving cars [1], [2], buses), manufacturing
(robotic arms, service robots), agriculture, social care, and
search-and-rescue disaster management for their ability to
accomplish tasks independently or with minimal human su-
pervision. Techniques for developing autonomous systems
include human encoded control and reinforcement learning.
Reinforcement learning [3] is a powerful data-driven strat-
egy in which the learning occurs in a closed loop agent-
environment interactions whereas the other techniques require
human involvement. In the presence of huge amounts of
training data, some autonomous systems have proven to sur-
pass human experts in performance, for example, Alpha Go
Zero [4]. End-to-End (e2e) learning [5] is a key framework

for realizing autonomy in robots, which makes use of deep
learning models. For example, NVIDIA’s DAVE-II [1] and
ALVINN [2] use Convolutional Neural Networks (CNN) to
design the controller for autonomous cars. A combination of
reinforcement learning and deep learning approaches provide a
framework to transition from model-based system components
to data-driven Learning-Enabled Components (LECs).

While the use of data-driven LECs provides a paradigm
shift in the ability to create adaptive systems, it also presents
challenges in testing and assurance. For example, there are no
established analogues to path coverage-based testing mecha-
nisms for components designed with neural networks. There
has been ongoing research in designing tools for automated
testing [6], [7] of Deep Neural Network driven systems;
however, they are limited by the exhaustive test case scenarios
they support, and hence, may not be able to detect all the
edge cases. In addition, existing verification tools [8] can only
handle some types of activation functions, and Neural Network
of limited complexity.

The key challenges in establishing confidence in data-driven
LEC systems are: (1) Operating in unknown contexts [9]
e.g., search-and-rescue robots, and (2) the limited availability
of training data which reduces the confidence in the trained
LECs.

Safety-critical Cyber Physical Systems (CPS) like aircraft
(Boeing 777 [10]), unmanned aerial vehicles (UAV) [11],
and mission critical ground rovers [12] are augmented with
Simplex Architectures [10] to increase system assurance. This
architectural pattern allows the integration of safety super-
visors to aid the control decisions of the high performance
unverified controller.

However, Simplex Architectures do not provide a method
to combine two unverified controllers. Applying a simplex
strategy in such a scenario may not improve the systems
safety (for such scenarios we introduce weighted simplex
strategies). Additionally, it does not consider the different
operational modes and contexts of the working environment
in performing the arbitration, which could be crucial for
the systems performance. Biswas, Gautam, et al. [13] have
shown that mode detection is a crucial problem and data-
driven anomaly detection methods should be context sensitive.
They also do not provide any confidence metric that can be
used to evaluate the decisions of the LEC if safety violations



Symbol Description
SL Steering PWM value of DeepNNCar using LEC
SS Steering PWM value of DeepNNCar using Safety Supervisor

SSA Steering PWM value using Weighted Simplex Strategy
TR Inference pipeline time of DeepNNCar using CSW-Simplex
V Current speed of DeepNNCar

VMAX Max Saturated speed during task offload
VSET Set speed computed by CSW-Simplex
WL Ensemble weight given to LEC.
WS Ensemble weight given to Safety Supervisor.

WSET Ensemble weights {WL; WS} computed by CSW-Simplex
TSW Preset Threshold used by SW-Simplex
STOP Command from Safety Supervisor during safety violations

M̂ Estimated state of the track segment
t̂ Deviation of car from the track center
I Image captured by the front facing camera

TABLE I: List of Symbols

occur. Such diagnostic capabilities are crucial in safety-critical
systems. We seek to address the following research questions:
1) Can we use an online simplex supervisor that can learn

from past actions (experience) and augment the control
actions taken by the LEC to improve safety?

2) Can we provide a confidence metric about the safety of
current actions at system level in real-time, given all the
past actions?

Our Contributions: To address the above questions, we
describe: (1) an adaptive framework that allows the integration
of safety supervisors and weighted simplex strategies, and
performs active switching between them based on the perfor-
mance of the system; (2) implement and evaluate two weighted
simplex strategies that allow us to encode domain knowledge
(e.g. the operating environment or actions to be taken in par-
ticular operating conditions). Using these strategies we show
an improvement in the safety guarantees and performance of
the system; (3) implement a system monitor which uses the
current state information and a Bayesian network model to
estimate a probability of the robotic system remaining in the
safe working region; and (4) design a resource management
and task offloading strategy to compensate for the increased
computations of the weighted simplex strategies.

Outline: Section II describes the test environment, the
controllers, and safety algorithms employed by the system.
Section III introduces different weighted simplex strategies.
Section IV describes a monitor that computes the probability
of the robotic system to remain in the safe working region.
Section V illustrates resource management and system integra-
tion, and Section VI evaluates the weighted simplex strategies
and resource management. Section VII reviews related work,
and finally, Section VIII presents our conclusion. The symbols
used in the paper are described in Table I.

II. DEEPNNCAR: TESTBED FOR AUTONOMOUS DRIVING

DeepNNCar1 (in Figure 1) is built upon the chassis of
Traxxas Slash 2WD 1/10 Scale RC car. The RC car has two

1Build instructions, source code, datasets, bill of materials, and videos of
DeepNNCar can be found at: https://github.com/scope-lab-vu/deep-nn-car

Fig. 1: DeepNNCar, a resource constrained autonomous robot used in our
experiments.

on-board motors, a servomotor for steering control, and a Titan
12T 550 motor for motive force, which are powered by a
8.4volts NiMH battery. Raspberry Pi 3 (RPi3) is the onboard
computing unit which performs all the required computations
and interfaces with the sensors. RPi3 reserves two GPIO pins
to generate Pulse Width Modulation (PWM) signals that are
used to control the motors of the car. For the servomotor,
a duty cycle range of (10, 20) corresponds to a continuous
steering angle of (-30°, 30°), and for the Titan 12T 550
motor, we operate within the PWM range of (15, 15.8), which
corresponds to a vehicle speed range of (0, 1) m/s.

A. Sensors

A USB webcam is attached to the RPi3 to capture images
at 30 FPS with a resolution of 320 � 240 � 3 (320x240
RGB pixels). During autonomous driving, these images are
used by the onboard controllers to compute desired steering
angle. A slot-type IR opto-coupler speed sensor2 is attached
to the chassis near the rear wheel and counts revolutions of
the wheel. The speed of the car is calculated based on the
frequency of revolutions and is used to estimate the 2D relative
position of the car (shown in Figure 2). During data collection
camera images, vehicle speed, and steering angle are stored
on a USB drive.

B. LEC in DeepNNCar

End-to-End learning is a perception based control approach
that uses supervised learning to directly compute the control
action. Is widely used because of its conceptual simplicity and
computationally efficient approach. The e2e learning approach
in fully autonomous cars was first demonstrated by ALVINN
[2] in 1989, and was recently extended by NVIDIA through
their self-driving car, DAVE-II [1].

In the current implementation, the hardware uses e2e learn-
ing which implements a modified version of DAVE-II to
predict steering (SL). The original DAVE-II CNN [1] takes

2We refer to this sensor as opto-coupler in the rest of the paper
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