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Abstract. We study users’ incentives to become cybercriminals when
network security is interdependent. We present a game-theoretic model
in which each player (i.e., network user) decides his type, honest or mali-
cious. Honest users represent law-abiding network users, while malicious
users represent cybercriminals. After deciding on their types, the users
make their security choices. We will follow [29], where breach probabili-
ties for large-scale networks are obtained from a standard interdependent
security (IDS) setup. In large-scale IDS networks, the breach probability
of each player becomes a function of two variables: the player’s own secu-
rity action and network security, which is an aggregate characteristic of
the network; network security is computed from the security actions of
the individual nodes that comprise the network. This allows us to quan-
tify user security choices in networks with IDS even when users have only
very limited, aggregate information about security choices of other users
of the network.
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1 Introduction

Due to technological reasons, network security features multiple layers of inter-
dependencies. Interdependent security has been extensively studied, see [20] for
a recent survey; however, most of the existing literature does not address the
strategic reasons of the losses; i.e., there is no explicit modeling of attackers’
incentives to become engaged in cybercrime. In this paper, we look at users’ in-
centives for becoming attackers (malicious users), and study how users’ security
choices and utilities are affected by the number of attackers.

Another distinctive feature of our setup, which is non-standard for the IDS
literature, is that our model can deal with large-scale IDS networks. In many
cases, the IDS papers do not emphasize the effects of large-scale games. Notable
exceptions closely related to our work are [24] and [1]. In the latter, the authors
consider a model with multiple IDS players similar to our setup, and in the
former, large-scale networks with different topologies are studied. Ideas from
[24] were further developed in [29], whose setup we expand to study incentives
for becoming a cybercriminal.



We consider a large-scale IDS network with strategic players (i.e., network
users or nodes), who choose to which type they will belong, honest or malicious;
the players also make choices of their security investments; we allow continuous
security choices.

A common trend in numerous papers approaching economic aspects of cyber-
crime is inquiry into the “production technology” of cybercrime.1 Our approach
is complementary: we give virtually no details about the implementation side of
cybercrime. We take a large-scale, macro perspective, and reduce the problem
to the following base level parameters: risk aversion, loss size, degree of IDS, and
costs of improving security. In this paper, we consider a more aggregate perspec-
tive. We build on the framework of risk assessment for large-scale IDS networks,
developed by [29], and model users’ incentives to become cybercriminals. While
at present our model is minimalistic and stylized, it could be extended to include
more parameters, such as different costs of attacking, and attacks with different
IDS features.

Following a seminal contribution of Tullock [31], we approach incentives for
cybercrime in the perspective of rent seeking. The core idea of rent seeking was
originally coined by Tullock to study any non-productive wealth redistribution.
Rent seeking was demonstrated to be useful methodology for the analysis of
diverse subjects, ranging from monopolist’s (over)pricing and losses from impo-
sition of tariffs to corruption, fraud, theft, and other criminal endeavors. The
distinguished feature of rent seeking is its wasteful and oftentimes openly co-
ercive nature. The propensity of rent-seeking activities depends on institutions
and enforcement capabilities. The prevalence of inefficient, corrupt institutions
results in higher rent-seeking activities, and it is associated with poor economic
performance and growth.

In [26,27], Olson connected an increase of rent-seeking activities with in-
creased severity of the problem(s) of collective action. In the cybersecurity eco-
nomics literature, this problem is studied under the name of free riding. The
problem arises when individually and socially optimal actions differ, and a large
number of dispersed players is present, with each player’s gains or losses being
trivial in size. In such cases, mechanisms to align individually and socially op-
timal actions are hard to find. Investments in cybersecurity are well known to
have a marked presence of free riding ([32,2,3]), and thus, in general, suboptimal.
Proliferation of rent seeking (in our case, cybercrime) negatively affects growth,
as it shifts resources away from productive activities.

Consider for example the papers modeling one of the most widespread cy-
bercrimes – phishing. The modeling literature originated by [7] looks at specific
costs (number of targets, strength of the attack, probability of being caught,
and the size of the fine) and the benefits (revenues resulting from the losses of
the targets, such as stolen bank account information). The authors discuss the
difficulties of designing effective countermeasures. From their analysis, increased
penalties have limited impact. They advocate that improving the controls to pre-
vent trading of stolen data will be more impactful. Followup papers introduce

1 For example in [18,4,22], cybercrime is approached from value-chain perspective.



additional considerations and tools, such as risk simulation approach [17]. At the
same time, the literature acknowledges practical complications: while preventing
trading will be highly effective, it is questionable that this recommendation can
be achieved in practice: it requires global enforcement institutions with novel
legal rights and technological capabilities.

In the world with global connectivity, crime is becoming global as well due
to the increased proliferation of the cybercrime. The global world is facing new
threats, with meager existing institutions to counteract them. This situation re-
quires developing novel tools to reduce user incentives for becoming malicious.
Designing new economic institutions to be charged with mitigating rent-seeking
incentives to engage in cybercrime is socially desirable as only such institutions
will preclude the formation and syndication of organized international cyber-
crime. Our work permits quantifiable assessment and comparative analysis of
various policy tools and institutions.

1.1 Applications

Our analysis can be applied to address robustness of large-scale cyber-physical
systems (CPS). In [16], Knowles et al. present a comprehensive review of security
approaches for CPS, and survey methodologies and research for measuring and
managing cyber-risks in industrial control systems.

Since modern CPS are increasingly networked, achieving robust performance
requires addressing the problem of interdependencies (see Section 6.2.3 of [16]).
The authors identify the importance of system-wide risk assessment for CPS,
and discuss three difficulties: (i) scant data availability, (ii) lack of established
framework for defining and computing risk metrics, and (iii) lack of reliable
performance evaluation of security measures. The focus of our paper is (ii). We
use IDS framework, and demonstrate how system security evolves when the
attacker choices are endogenous.

For example, the perpetrators of the Energetic Bear (a.k.a. Dragonfly) cyber-
espionage campaign exploited interdependence between energy companies and
industrial control system (ICS) manufacturers [30]. In order to penetrate highly-
secure targets (e.g., energy grid operators, major electricity generation firms,
petroleum pipeline operators in the U.S., Germany, Turkey, etc.), the attackers
compromised ICS manufacturers and inserted malware into software updates
distributed by these manufacturers, which were downloaded and applied by the
targets, leading to their compromise.

While Knowles et al. discuss the problem of interdependencies, they also
express skepticism about the realistic options of improving the current state of
cybercrime reality [16]. In fact, the authors expect slow progress due to lack of
incentives for private entities to share information about risks. Our setup allows
circumventing the problem of data limitations as our analysis relies on aggregate
information about network security only.

The remainder of this paper is organized as follows. In Section 2, we discuss
related work on interdependent security. In Section 3, we introduce our model
of interdependent security and incentives for malicious behavior. In Section 4,



we study the Nash equilibria of our model. In Section 5, we present numerical
illustrations for our theoretical results. Finally, in Section 6, we offer concluding
remarks and outline future work.

2 Related Work

In this section, we provide a brief overview of the most related papers from the
interdependent security literature. For a more detailed review of the relevant
literature, we refer the interested reader to [20].

The interdependent security problem was originally introduced in the seminal
paper of Kunreuther and Heal, who initially formulated an IDS model for airline
security. They extended their model to cover a broad range of applications,
including cybersecurity, fire protection, and vaccinations [19]. They study the
Nash equilibria of the model, and examine various approaches for incentivizing
individuals to invest in security by internalizing externalities, such as insurance,
fines, and regulations. In follow-up work, they extend their analysis to study
tipping (i.e., when inducing some individuals to invest in security results in others
investing as well) and coalitions of individuals that can induce tipping [10,11].
Other authors have also used this model to study various phenomena, including
uncertainty and systematic risks [13,21,14].

Öğüt et al. introduce an interdependence model for cybersecurity, which they
use to study the effects of interdependence on security investments and cyber-
insurance [24]. Similar to the model of Kunreuther and Heal, the model of Öğüt
et al. is based on the probabilistic propagation of security compromises from
one entity to the other. In follow-up work, the authors extend their analysis by
considering subsidies provided by a social planner, and find that subsidies for
security investments can induce socially optimal investments, but subsidies for
insurance do not provide a similar inducement [25].

Varian introduces and studies three prototypical interdependence models for
system reliability: total effort, weakest link, and best shot [32]. In these models,
the overall level of reliability depends respectively on the sum of efforts exerted
by the individuals, the minimum effort, and the maximum effort. Later, these
models have been widely used for studying security interdependence.

For example, Grossklags et al. compare Nash equilibrium and social optimum
security investments in the total effort, weakest link, and best shot models [8].
In another example, Honeyman et al. address investment suboptimalities when
users cannot distinguish between security failures (weakest link), and reliability
failures (total effort) [12].

Khouzani et al. consider security interdependence between autonomous sys-
tems (AS), and study the effect of regulations that penalize outbound threat
activities [15]. The authors find that free-riding may render regulations ineffec-
tive when the fraction of AS over which the regulator has authority is lower than
a certain threshold, and show how a regulator may use information regarding
the heterogeneity of AS for more effective regulation.



In most interdependent security models, adversaries are not strategic decision-
makers. Nonetheless, there are a few research efforts that do consider strategic
adversaries. Hausken models adversaries as a single, strategic player, who con-
siders the users’ strategies and substitutes into the most optimal attack alloca-
tion [9]. This substitution effect creates negative externalities between the users’
security investments, which are fundamentally different from the positive exter-
nalities considered in our model. Moscibroda et al. consider malicious users [23]
in the inoculation game, which was introduced originally by Aspnes et al. [5,6].
In the model of Moscibroda et al., malicious users are byzantine: they appear to
be non-malicious users who invest in security, but they are actually not secure
at all. Furthermore, the set of malicious users is assumed to be exogenous to
the model. Grossklags et al. introduce an interdependence model, called weakest
target, in which an attacker targets and always compromises the user with lowest
security effort [8].

In another related paper, Acemoglu et al. focus on security investments of
interconnected agents, and study contagion due to the possibility of cascad-
ing failures [1]. They analyze how individual and social optima behave in the
presence of endogenous attacks. The authors formulate the sufficient conditions
for underinvestment in security, and demonstrate that overinvestment occurs in
some cases. Interestingly, in contrast to our results, overinvestment in security
may intensify when attacks are endogenous in [1]. In our paper, the imposition
of fast growing security costs guarantees that underinvestment occurs.

3 Model

Here, we introduce our model of non-malicious and malicious users, their incen-
tives, and the security interdependence between them. A list of symbols used in
this paper can be found in Table 1.

We assume that the number of users is fixed and denoted by N . Each user
chooses his type, malicious or honest (i.e., attacker or defender). We will denote
the number of malicious users and honest users by M and N −M , respectively.
Each user’s objective is to maximize his expected payoff (i.e., utility) u

ui = ui(t, s) = max
ti,si
{ui, vi} ,

where vi = vi(t, s) and ui = ui(t, s) denote respective utilities of malicious and
honest users, and s = (s1, . . . , sN ) is a vector of the players’ security choices, and
t = (t1, . . . , tN ) is a vector of user types, with ti = 1/0, for malicious/honest user
respectively, which allows us to express the number of malicious users M as:

M :=

N∑
i=1

ti. (1)

Each honest user i objective is to maximize his expected utility ui = ui(t, s)

ui = [1−Bi(s)]U(W ) +Bi(s)U(W − L)− h(si), (2)



Table 1. List of Symbols

Symbol Description

Constants

N number of users
W initial wealth of a user
L loss of a user in case of a security breach
µ probability of a malicious user getting caught
q∞ defined as limN→∞ q(N)N

Functions

q(N) strength of interdependence between N users
h(s) cost of security level s

Bi(s1, . . . , sN ) security breach probability of user i
Gi(M, s1, . . . , sN ) financial gain of malicious user i

U(. . .) utility function of a user

Variables

si security level of user i
M number of malicious users
ŝ equilibrium security level of honest users

where Bi(s) = Bi(si, s−i) is the probability that user i suffers a security breach,
U(w) is the utility with wealth w, W is the initial user wealth, and L is the
loss in case of a security breach. We assume that L ∈ (0,W ). The function h(s)
is security cost function, with s ∈ [0, 1) denoting the security level of the user.
While we view h as the “cost” of attaining a given security level, we model these
costs as separable from U because security costs are often non-monetary (e.g.,
inconvenience and effort).

We assume h′(s) > 0 and h′′(s) > 0 for si ∈ (0, 1) for every s ∈ [0, 1), h(0) =
h′(0) = 0, and h(1) = ∞.2 In addition, we will impose h′′′(s) > 0 to simplify
the exposition. Intuitively, with these assumptions, the marginal productivity
of investing in security is decreasing rapidly, and the cost of attaining perfect
security is prohibitively high. We assume that the users are risk-averse, that is,
the function U is concave at any wealth w ≥ 0: U ′(w) > 0 and U ′′(w) < 0; also
we let U(0) = 0.

Each malicious user j maximizes vj = vj(t, s)

vj = (1− µ)U(Gj(t, s)) + µU(0)− h(sj), (3)

where µ is the probability of a malicious user being caught and punished (e.g.,
by law enforcement), and Gj is the gain of user j from engaging in cyber-crime.
We assume that honest users’ losses are distributed evenly between the malicious
users:

Gj(t, s) =

∑
i∈honest usersBi(s)L

M
, (4)

and M is given by eq. (1).

2 In other words, the Inada conditions hold.



In our model, each user has two strategic actions: (i) user decides on his type
(malicious or honest), and on his security level s (and thus, cost h(s)). In the
next section (Section 4), we will study the Nash equilibria of our model, which
are defined as follows.

Definition 1 (Nash Equilibrium). A strategy profile (t, s) is a Nash equilib-
rium if
– being malicious is a best response for every malicious user and
– being non-malicious and investing in security level si is a best response for

every non-malicious user i.

3.1 Interdependent Security Model

For breach probabilities Bi, we will assume interdependent security (IDS). Our
model builds on well-known interdependent security model of Kunreuther and
Heal [19].

In this model, a user can be compromised (i.e., breached) in two ways: (i)
directly and (ii) indirectly. The probability of a direct breach reflects the proba-
bility that an honest user is breached directly by an adversary. For each user i,
the probability of being compromised directly is modeled as Bernoulli random
process, with the failure probability equal to (1− si) when security investment
is h(si). This means that the probability of user i being safe from direct attacks
is equal to that user’s security level si, and does not depend on other users’
security choices. We assume that for any two users, the probabilities of direct
compromise are independent Bernoulli random processes.

Indirect breach probability reflects the presence of IDS – the users are inter-
dependent. More specifically, we assume that in addition to direct compromise,
the user can be breached indirectly – i.e., via a connection to another user,
who was compromised directly. The assumption of indirect compromise reflects
the connectivity and trust between the users. Let qij(N) denote the conditional
probability that user i is compromised indirectly by user j in the network with
N users, given that user j is directly compromised. To simplify, for now we will
assume that qij(N) is a constant (independent of i and j): qij(N) = q(N). Then,
the probability of user i to be breached indirectly can be expressed as

Pr[compromised indirectly]

=1− Pr[not compromised indirectly] (5)

=1−
∏
j 6=i

Pr[no indirect compromise from user j] (6)

=1−
∏
j 6=i

(1− Pr[user j is directly compromised] Pr[successful propagation])

(7)

=1−
∏
j 6=i

(1− (1− sj)q(N)). (8)



Next, let Bi = Bi(s) denote the probability that user i is compromised (i.e.,
breached) either directly or indirectly:

Bi = 1− Pr[not compromised] (9)

= 1− Pr[not compromised directly] Pr[not compromised indirectly] (10)

= 1− si
∏
j 6=i

(1− (1− sj)q(N)). (11)

In practical scenarios, q(N) must decrease with N (the number of network users).
As it is standard in aggregative games, we let the limit of q(N) equal to zero
as N approaches infinity.

4 Analysis

Next, we present theoretical results on our model of interdependent security
and incentives for malicious behavior. First, in Section 4.1, we consider breach
probabilities in large-scale networks. We show that the IDS model allows approx-
imating a user’s breach probability using the user’s own security level and the
average security level of the network. Second, in Section 4.2, we study equilibrium
security choices for a game with a fixed number of malicious users. Finally, in
Section 4.3, we study the equilibrium of the game where the number of malicious
users is endogenous: it is determined by user choices.

4.1 Large-Scale Networks

We begin our analysis by studying the honest users’ breach probabilities in
large-scale networks (i.e., when the number of users N is high). Our goal here
is to express the breach probabilities in a simpler form, which will facilitate the
subsequent analysis of the users’ equilibrium choices.

First, recall that in practical scenarios, q(N) approaches zero as N grows (i.e.,
limN→∞ q(N) = 0). Hence, we can discard the terms with q(N)2, q(N)3, . . ., and
obtain the following approximation for large-scale networks:

Bi(s) =1− si
∏
j 6=i

(1− (1− sj)q(N)) (12)

≈1− si

1−
∑
j 6=i

(1− sj)q(N)

 (13)

≈1− si
[
1− q(N)N

(
1−

∑
j 6=i sj

N

)]
. (14)

Let s̄ denote the average of the security levels taken over all users; formally, let

s̄ =
∑

j sj

N . Next, we use that the fraction
∑

j 6=i sj

N approaches the average security
level s̄ as N grows, and obtain:

1− si
[
1− q(N)N

(
1−

∑
j 6=i sj

N

)]
≈ 1− si (1− q(N)N(1− s̄)) . (15)



Finally, we assume that q(N)N has a limit as N approaches infinity, and this
limit is less than 1. Then, we let q∞ = limN→∞ q(N)N , which gives us:

1− si (1− q(N)N(1− s̄)) ≈1− si(1− q∞(1− s̄)) (16)

=1− si(1− q∞)− siq∞s̄. (17)

Thus, for large-scale networks, breach probability Bi is a function of user security
si and the average security s̄:

Bi(si, s−i) = 1− si(1− q∞)− siq∞s̄. (18)

In the remainder of the paper, we use (18) for breach probability Bi of user i.

4.2 Game with Exogenous Number of Malicious Users

Next, let us consider a game with a fixed number M of malicious users, that is, a
game in which the strategic choice of every user i is limited to selecting security
si. From Equation (3), malicious users incur no losses, thus, they will not invest
in network security (see Section 3.1). Hence, in any equilibrium, sj = 0 for every
malicious user j.

Let s̄H denote the average security level of honest users:

s̄H =

∑
j∈honest users sj

N −M
. (19)

Recall that malicious users contribute zero towards the security of the net-
work, that is, sj = 0 for every malicious user j. Hence, the breach probability of
an honest user i can be expressed as

Bi(si, s̄H) =1− si(1− q∞)− siq∞s̄ (20)

=1− si(1− q∞)− siq∞
N−M
N

s̄H . (21)

Using Bi(si, s̄H), the expected utility of user i can be expressed as

u = [1−Bi(si, s̄H)]U(W ) +Bi(si, s̄H)U(W − L)− h(si) (22)

= U(W − L) + [1−Bi(si, s̄H)]∆0 − h(si), (23)

where
∆0 = U(W )− U(W − L). (24)

Our goal is to characterize the equilibrium security levels when user types are
given. Thus, in the game Γ (M) we assume that the users’ types are fixed and
their strategic choices are restricted to selecting security levels, and we study
the Nash equilibrium of this game.

Definition 2 (Nash Equilibrium with Fixed M). Consider the game Γ (M)
in which the number of malicious users M is given. A strategy profile (s1, . . . ,
sN ) is a Nash equilibrium if security level si is a best response for every user.



Lemma 1. In any equilibrium of the game Γ (M), for each user type, security
choices are identical.

Proof. First, we notice that for any M , malicious users do not invest in security.
From the definition of malicious user utilities (3), they have no losses, and thus
have no incentive to invest in security: thus, for any M, it is optimal to choose
s∗j (M) = 0 for every malicious user j.

Second, we show that every honest user has a unique best response, and this
best response is independent of user identity, which means that any equilibrium
is symmetric. Consider some s = (·, s−i). To find user i’s optimal security (i.e.,
the utility maximizing security si), we take the first derivative of (2) with respect
to si (user i FOC):

d

dsi
ui = − d

dsi
Bi(si, s−i)∆0 − h′(si) = 0, (25)

where we use Bi given by (14)

d

dsi
Bi(si, s−i) =

d

dsi

(
1− si

[
1− q(N)N

(
1−

∑
j 6=i sj

N

)])
(26)

= −
[
1− q(N)N

(
1−

∑
j 6=i sj

N

)]
. (27)

Since the second order condition (SOC) is negative:

d2

ds2i
ui = −h′′(si) < 0,

there exists a unique optimal response s∗i to any s∗i = s∗i (M, s i), and it is given
by the solution of FOC (25).

For large N , we have:

d

dsi
ui = − d

dsi
Bi(si, s−i)∆0 − h′(si) (28)

=

1− q∞
(

1− N−M
N

s̄H

)
︸ ︷︷ ︸

<1


︸ ︷︷ ︸

>0

∆0 − h′(si). (29)

Since h′(si) is increasing in si, the derivative u′ is a decreasing function of si.
Furthermore, since the first term is positive and h′(0) = 0, the derivative u′

is positive at si = 0. Consequently, user i best response s∗i is interior (because
si = 1 cannot be optimal as it is unaffordable), and it is given by:

u′ = 0 (30)



[
1− q∞

(
1− N−M

N
s̄H

)]
∆0 − h′(si) = 0 (31)

∆0 =
h′(si)

1− q∞
(
1− N−M

N s̄H
) . (32)

Finally, since the solution of (32) is independent of user identity, we infer that
best responses are identical for all honest users. ut

From Lemma 1, we infer that the honest users’ security levels are identical in
an equilibrium. The following theorem shows that the equilibrium security level
always exists, and is unique. This implies that there is a unique Nash equilibrium
of the game Γ (M).

Theorem 1. For a given M , the honest users’ equilibrium security s∗(M) is
unique.

Proof. By definition, identical security level s is an equilibrium if and only if
security level s is a best response for every honest user. Consequently, it follows
from the proof of Lemma 1 that an identical security level s is an equilibrium if
and only if

∆0 = R(s,M), (33)

where

R(s,M) =
h′(s)

1− q∞ + q∞
N−M
N s

. (34)

In order to prove the claim of the theorem, we have to show that Equation (33)
has a unique solution.

First, notice that
R(0,M) = 0 (35)

since h′(0) = 0, and
R(1,M) =∞ (36)

since h(s) grows without bound as s approaches 1. Therefore, there must exist
a value s∗ between 0 and 1 for which R(s∗,M) = ∆0 as R(s,M) is a continuous
function on [0, 1).

To prove that this s∗ exists uniquely, it suffices to show that d
dsR(s,M) > 0

on (0, 1). The first derivative of R(s,M) with respect to s is

d

ds
R(s,M) =

h′′(s)
[
1− q∞ + q∞

N−M
N s

]
− h′(s)q∞N−M

N[
1− q∞ + q∞

N−M
N s

]2 . (37)

Since the denominator is always positive, we only have to show that the numer-
ator is positive on (0, 1). First, observe that the numerator is non-negative at
s = 0, since

h′′(0)︸ ︷︷ ︸
≥0

[
1− q∞ + q∞

N−M
N

s

]
︸ ︷︷ ︸

>0

−h′(0)︸ ︷︷ ︸
=0

q∞
N−M
N

≥ 0. (38)



Finally, we prove that the numerator is strictly increasing on [0, 1) by showing
that its first derivative with respect to s is positive:

d

ds

(
h′′(s)

[
1− q∞ + q∞

N−M
N

s

]
− h′(s)q∞

N−M
N

)
= h′′′(s)

[
1− q∞ + q∞

N−M
N

s

]
+ h′′(s)q∞

N−M
N

− h′′(s)q∞
N−M
N

(39)

=h′′′(s)︸ ︷︷ ︸
>0

[
1− q∞ + q∞

N−M
N

s

]
︸ ︷︷ ︸

>0

(40)

>0. (41)

Since the numerator is non-negative at s = 0 and it is strictly increasing in s
on [0, 1), it must be positive for any s ∈ (0, 1). Therefore, the first derivative of
R(s,M) is also positive, which proves that the solution s∗ exists uniquely for a
given number of malicious users M . ut

Equilibrium in the game Γ (M) exists and is unique. This allows us to define
the equilibrium security level as a function s∗(M) of M .

Theorem 2. As the number of malicious users M increases, the honest users’
equilibrium security s∗(M) decreases.

Proof. Since ∆0 = R(s∗(M),M) must hold for every pair (s∗(M),M) (see Equa-
tion (33)), we have

0 =
d

dM
R(s∗(M),M) (42)

0 =
h′′(s∗(M))s∗′(M)

(
1− q∞ + q∞

N−M
N s∗(M)

)(
1− q∞ + q∞

N−M
N s∗(M)

)2
−
h′(s∗(M))q∞

(−1
N s∗(M) + N−M

N s∗′(M)
)(

1− q∞ + q∞
N−M
N s∗(M)

)2 (43)

− h′(s∗(M))q∞

(
−1

N
s∗(M) +

N−M
N

s∗′(M)

)
(44)

0 = s∗′(M)

[
h′′(ŝ(M))

(
1− q∞ + q∞

N−M
N

s∗(M)

)
− h′(s∗(M))q∞

N−M
N

]
− h′(s∗(M))q∞

−1

N
s∗(M) (45)

s∗′(M) =
h′(s∗(M))q∞

1
N s
∗(M)

h′(s∗(M))q∞
N−M
N − h′′(s∗(M))

(
1− q∞ + q∞

N−M
N s∗(M)

) . (46)

Notice that the denominator of the above fraction is the inverse of the numerator
of the right-hand side of Equation (37). Since we have shown in the proof of



Theorem 1 that the numerator of the right-hand side of Equation (37) is positive,
we have that the denominator of the above fraction is negative. Further, the
numerator of the above fraction is obviously positive since it consists of only
positive factors. Hence, s∗′(M) is negative, which proves that the honest users’
equilibrium security decreases as the number of malicious users increases. ut

Unfortunately, s∗(M) cannot be expressed in closed form. Nonetheless, we
can easily find s∗(M) numerically for any M . On the other hand, we can express
the number of malicious users as a function M(s∗) of the equilibrium security
level s∗ in closed form:

∆0 =
h′(s∗)

1− q∞ + q∞
N−M
N s∗

(47)

q∞
N−M
N

s∗ =
h′(s∗)

∆0
+ q∞ − 1 (48)

M(s∗) = N

[
1−

h′(s∗)
∆0

+ q∞ − 1

q∞s∗

]
. (49)

The value of M(s∗) can be interpreted as the number of malicious users which
induces the honest users to choose security s∗(M). Note that from Theorem 2,
we readily have that M(s∗) is a decreasing function of s∗.

4.3 Incentives for Becoming Malicious

In the previous subsection, we studied a restricted version of our game Γ (M),
in which the number of malicious users was exogenously given. We found the
equilibrium of the game Γ (M) as the solution of (34), from which the honest
users’ equilibrium security levels can be found.

Next, we will study the game Γ , in which users choose their types (honest or
malicious). We will solve the game Γ by building on the results of the previous
subsection.

First, Theorem 1 provides the honest users’ equilibrium security level s∗(M).
Thus, we can express a malicious user’s gain as a function Gi(M) of the number
of malicious users M :

Gi(M) =

∑
j∈honest usersBj(sj , s̄H)L

M
(50)

=
(N−M)

(
1− s∗(1− q∞)− s∗2N−MN q∞

)
L

M
. (51)

From Theorem 1, honest users choose s∗(M) in an equilibrium. Next, we will
find an equilibrium number of malicious users of M . For this purpose, we have
to determine the combinations of M and s∗(M) that form a strategy profile such
that being malicious is a best response for malicious users and being honest is a
best response for honest users.



Finally, now we are ready to prove that there always exists an equilibrium
of the game in which users self-select their types (honest or malicious). Effec-
tively, for each equilibrium number of malicious usersM , the equilibrium security
choices will be identical to equilibrium security s∗(M) in the game Γ (M) with
that same fixed number of malicious users M .

Theorem 3. There exists at least one Nash equilibrium.

Proof. Assume the reverse. Then, at any M ∈ [0, N−1] there exists (i) malicious
or (ii) honest user, for whom a deviation to the opposite user type is profitable:

v(M, s∗(M)) < u|M−1,s−i=s∗(M) := max
si

ui(M − 1, si, s−i), (i) (52)

or
u(M, s∗(M)) < v(M + 1, s∗(M)), (ii) (53)

where v(M, s∗(M)) and u(M, s∗(M)) denote, respectively, the malicious and
honest users’ utility withM malicious users and all honest users choosing security
s∗(M), and ui(M, si, s−i) denotes honest user i’s utility given that he chooses
security si and all other honest users choose s−i. From Lemma 1, the honest
users’ best response to M and s−i = s∗(M) is s∗(M), which gives:

u|M,s∗(M) ≤ u(M, s∗(M)). (54)

From Theorem 2, s∗(M) decreases in M , which gives:

v(M + 1, s∗(M)) < v(M + 1, s∗(M + 1)), (55)

because ceteris paribus, lower security benefits malicious users. Similarly, we
have from Theorem 2 and (54) that:

u|M̃,s∗(M̃+1) < u|M̃,s∗(M̃) ≤ u(M, s∗(M)) (56)

because ceteris paribus, higher security benefits honest users.
Let (52) hold3 for any M > M̃ , but not for M̃ . Hence, at M̃ + 1 we have:

v(M̃ + 1, s∗(M̃ + 1)) < u|M̃,s∗(M̃+1) . (57)

Then, if M̃ is not an equilibrium, (53) must hold:

u(M̃, s∗(M̃)) < v(M̃ + 1, s∗(M̃)). (58)

Combining (58) and (57) with (55) and (56) provides:

u(M̃, s∗(M̃)) < v(M̃ + 1, s∗(M̃)) < v(M̃ + 1, s∗(M̃ + 1)) (59)

v(M̃ + 1, s∗(M̃ + 1)) < u|M̃,s∗(M̃+1) ≤ u(M̃, s∗(M̃)), (60)

which contradict each other. Thus, Theorem 3 is proven. ut
3 If (52) holds for all M ∈ [1, N − 1], we let M̃ = 0.



5 Numerical Illustrations

Here, we present present numerical results showcasing our model and illustrat-
ing our theoretical findings. First, we instantiate our model using the following
parameter values:
– number of users N = 500,
– initial wealth W = 100,
– potential loss L = 30,
– security interdependence q∞ = 0.5,
– probability of a malicious user getting caught µ = 0.2,

and we use the following security-cost function (see Figure 1):

h(s) = 10
s2√
1− s

(61)

and the following utility function:

U(x) = x0.9. (62)
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Fig. 1. The security-cost function h(s) and its first derivative h′(s) used in the numer-
ical illustrations.

Figure 2 shows the honest users’ equilibrium security level s∗(M) as a func-
tion of M . Furthermore, it also shows the honest and malicious users’ utilities
u and v for these equilibrium security levels (i.e., utilities given that there are
M malicious users and the honest users choose s∗(M)). We see that – as es-
tablished by Theorem 2 – the equilibrium security level is a strictly decreasing
function of the number of malicious users. Moreover, we see that the utilities
are also strictly decreasing. For the honest users, this is easily explained by the
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Fig. 2. The equilibrium security level s∗ and the resulting utilities u and v for honest
and malicious users as functions of the number of malicious users M . Please note the
different scalings of the vertical axes.

decrease in both the individual security level and the number of honest users
who contribute. For the malicious users, the utility decreases because the gain
from decreasing security levels is outweighed by the increasing competition be-
tween more and more malicious users. Finally, we can see that the equilibrium
number of malicious users is at M = 96 since the users have incentive to become
malicious for lower values of M (i.e., utility for being malicious is much higher)
and they have incentive to become honest for higher values of M .

Figures 3 and 4 show respectively the security level s∗ and the number of
malicious users M̂ in Nash equilibrium as functions of the potential loss L and
interdependence q∞. Note that the values s∗ and M̂ are well defined because
the equilibrium exists uniquely for each parameter combination (q∞, L) in this
example. As expected, we see that higher potential losses lead to higher security
levels since honest users have more incentive to invest in security, and they lead
to higher numbers of malicious users since committing cybercrime becomes more
profitable. On the other hand, stronger interdependence leads to lower security
levels since the honest users’ breach probabilities becomes less dependent on
their own security levels, which disincentivizes investing or making an effort.
Conversely, stronger interdependence leads to higher numbers of malicious users
since propagating security breaches becomes easier, which makes cybercrime
more profitable.

Figure 5 shows the security level s∗ and the number of malicious users M̂
in Nash equilibrium as functions of the probability µ of a malicious user get-
ting caught. Note that the values s∗ and M̂ are again well defined because the
equilibrium exists uniquely for each parameter value µ in this example. As ex-
pected, we see that a higher probability of getting caught disincentivizes users
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from engaging in cybercrime and reduces the number of malicious users. On the
other hand, the probability of getting caught has an almost negligible effect on
the honest users security level.

6 Conclusion

We studied users’ incentives to become cybercriminals in networks where the
users’ security is interdependent. Based on a well-known model of interdepen-
dent security, we introduced a game-theoretic model, in which each user can
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functions of the probability µ of a malicious user getting caught.

choose to be either honest or malicious (i.e., cybercriminal). First, we showed
how to compute security-breach probabilities in this model for large-scale net-
works. Then, we showed that if users are homogeneous, all honest users select
the same security level in an equilibrium, and this level exists uniquely for a
fixed number of malicious users. Furthermore, we found that this security level
is a strictly decreasing function of the number of malicious users, which means
that the overall security of a network drops rapidly as more and more users
choose to be malicious. Equivalently, the number of malicious users is a strictly
decreasing function of the honest users’ security levels, which is not surprising:
as users become less secure and easier to exploit, choosing to be malicious and
taking advantage of them becomes more profitable. Finally, we found that the
game always has a Nash equilibrium.

There are multiple directions for extending our current work. Firstly, we plan
to study heterogeneous users, who may have different initial wealth, probability
of getting caught, etc. While our current model, which assumes homogeneous
users, is very useful for studying how the users’ choices are affected by chang-
ing various parameters, a heterogeneous-user model will enable us to study the
differences between individual users’ choices. We conjecture that even though
users may choose different security levels, their equilibrium security levels will
decrease as the number of malicious users increases. Secondly, we plan to extend
our current model by considering cyber-insurance, that is, by allowing users to
purchase cyber-insurance policies in addition to investing in security. In prac-
tice, the adoption of cyber-insurance is growing rapidly as the market size is
estimated to increase from $2.5 billion in 2015 to $7.5 billion in 2020 [28]. Con-
sequently, users’ security choices are increasingly affected by the availability of
cyber-insurance. We conjecture that increasing the number of malicious users will



have an opposite effect on cyber-insurance as compared to security investments:
decreasing security levels will result in increasing adoption of cyber-insurance.
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