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Abstract. Attackers of computing resources increasingly aim to keep
security compromises hidden from defenders in order to extract more
value over a longer period of time. These covert attacks come in mul-
tiple varieties, which can be categorized into two main types: targeted
and non-targeted attacks. Targeted attacks include, for example, cyber-
espionage, while non-targeted attacks include botnet recruitment.
We are concerned with the subclass of these attacks for which detection
is too costly or technically infeasible given the capabilities of a typical
organization. As a result, defenders have to mitigate potential damages
under a regime of incomplete information. A primary mitigation strategy
is to reset potentially compromised resources to a known safe state, for
example, by reinstalling computer systems, and changing passwords or
cryptographic private keys.
In a game-theoretic framework, we study the economically optimal mit-
igation strategies in the presence of targeted and non-targeted covert
attacks. Our work has practical implications for the definition of secu-
rity policies, in particular, for password and key renewal schedules.

Keywords: Game Theory, Computer Security, Covert Compromise, Tar-
geted Attacks, Non-Targeted Attacks

1 Introduction

Most organizations devote significant resources to prevent security compromises
which may harm their financial bottomline or adversely affect their reputation.
Security measures typically include technologies to detect known attack vec-
tors. However, recent studies of anti-malware and anti-virus tools have demon-
strated their ineffectiveness against novel attack approaches and even incremen-
tally modified known malware.

At the same time, attackers prey upon opportunities to keep successful secu-
rity compromises covert. The goal is to benefit from defenders’ lack of awareness
by exploiting resources, and extracting credentials and company secrets for as
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long as possible. In contrast to non-covert attacks and compromises that focus
on short-term benefits, these long-lasting and (for typical organizations) unde-
tectable attacks pose specific challenges to system administrators and creators of
security policies. Discoveries of such attacks by sophisticated security companies
provide evidence for damage caused over many months or years.

CDorked, a highly advanced and stealthy backdoor, was discovered in April
2013 [5]. The malware uses compromised webservers to infect visitors with com-
mon system configurations. To stay covert, the malware uses a number of differ-
ent techniques, for example, not delivering malicious content if the visitor’s IP
address is in a customized blacklist. The operation has been active since at least
December 2012, and has infected more than 400 webservers, including 50 from
Alexa’s top 100,000 most popular websites.

Another example is Gauss, a complex, nation-state sponsored cyber-espionage
toolkit, which is closely related to the notorious Stuxnet [1,10]. Gauss was de-
signed to steal sensitive financial data from targets primarily located in the
Middle East, and was active for at least 10 months before it was discovered.

Such recently-revealed attack vectors as well as the suspected number of
unknown attacks highlight the importance of developing mitigation strategies
to minimize the resulting expected losses. Potentially effective mitigation ap-
proaches include resetting of passwords, changing cryptographic private keys,
reinstalling servers, or reinstantiating virtual servers. These approaches are of-
ten effective at resetting the resource to a known safe state, but they reveal little
about past compromises. For example, if a server is reinstalled, knowledge of if
and when a compromise occured may be lost. Likewise, resetting a password
does not reveal any information about the confidentiality of previous passwords.

Covert (and non-covert) attacks can be distinguished in another dimension
by the extent to which the attack is targeted (or customized) for a particular or-
ganization [4,7]. Approaches related to cyber-espionage are important examples
of targeted attacks, and require a high effort level customized to a specific target
[14]. A typical example of a non-targeted covert attack is the recruitment of a
computer into a botnet via drive-by-download. Such attacks are relatively low
effort, and do not require a specific target. Further, they can often be scaled to
affect many users for marginal additional cost [7]. See Table 1 for a comparison
between targeted and non-targeted attacks.

Table 1: Comparison of Targeted and Non-Targeted Attacks
Targeted Non-Targeted

Number of attackers low high
Number of targets low high
Effort required for each attack high low
Success probability of each attack high low

The targeted nature of an attack also matters to the defender, because tar-
geted and non-targeted attacks do different types of damage. For example, a
targeting attacker might use a compromised computer system to access an orga-
nization’s secret e-mails, which may potentially cause enormous economic dam-
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age; while a non-targeting attacker might use the same compromised machine
to send out spam, causing different types of damage.

The presence of both targeted and non-targeted covert attacks presents an
interesting dilemma for a medium-profile target to choose a mitigation strategy
against covert attacks. Strategies which are optimal against non-targeted attacks
may not be the best choice against targeted attacks. At the same time, mitigation
strategies against targeted attacks may not be economically cost-effective against
only non-targeting attackers.

To address this dichotomy, we present a game in which a defender must vie
for a contested resource that is subject to both targeted attacks from a strategic
attacker, and non-targeted covert attacks from a large set of non-strategic attack-
ers. We identify Nash equilibria in the simultaneous game, and subgame perfect
equilibria in the sequential game with defender leading. The optimal mitigation
strategies for the defender against these combined attacks lend insights to policy
makers regarding renewal requirements for passwords and cryptographic keys.

The rest of the paper is organized as follows. In Section 2, we review related
work. We define our game-theoretic model in Section 3, and we give analyti-
cal results for this model in Section 4. In Section 5, we present numerical and
graphical observations; we conclude in Section 6.

2 Related Work

2.1 Security Economics and Games of Timing

Research studies on the economics of security decision-making primarily investi-
gate the optimal or bounded rational choice between different canonical options
to secure a resource (i.e., protection, mitigation, risk-transfer), or the determi-
nation of the optimal level of investment in one of these security dimensions.
In our own work, we have frequently contributed to the exploration of these
research objectives (see, for example, [6,9,8]). Further, these studies have been
thoroughly summarized in a recent review effort [11].

Another critical decision dimension for successfully securing resources is the
consideration of when to act to successfully thwart attacks. Scholars have studied
such time-related aspects of tactical security choices since the cold war era by
primarily focusing on zero-sum games called games of timing [2]. The theoretical
contributions on some subclasses of these games have been surveyed by [17].

2.2 FlipIt: Modeling Targeted Attacks

Closely related to our study is the FlipIt model which identifies optimal timing-
related security choices under targeted attacks [19]. In FlipIt, two players com-
pete for a resource that generates a payoff to the current owner. Players can
make costly moves (i.e., “flips”) to take ownership of the resource, however,
they have to make moves under incomplete information about the current state
of possession.
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In the original FlipIt paper, equilibria and dominant strategies for simple
cases of interaction are studied [19]. Other groups of researchers have worked on
extensions [16,12]. For example, Laszka et al. extended the FlipIt game to the
case with multiple resources. In addition, the usefulness of the FlipIt game has
been investigated for various application scenarios [3,19]. We detail the difference
of our model to FlipIt in Section 3.3. The current study generalizes our previous
work which was restricted to exponential distributions for the attack time [13].

FlipIt has been studied in experiments in which human participants were
matched with computerized opponents [15]. This work has also been extended
to consider different interface feedback modalities [18]. The results complement
the theoretical work by providing evidence for the difficulty to identify optimal
choices when timing is the critical decision dimension.

3 Model Definition

We model the covert compromise scenario as a randomized, one-shot, non-zero-
sum game. For a list of symbols used in our model, see Table 2. The player
who is the rightful owner of the resource is called the defender, while the other
players are called attackers. The game starts at time t = 0 with the resource
being uncompromised, and it is played indefinitely as t → ∞. We assume that
time is continuous.

Table 2: List of Symbols
CD move cost for the defender
CA move cost for the targeting attacker
BA benefit received per unit of time for the targeting attacker
BN benefit received per unit of time for the non-targeting attackers
FA cumulative distribution function of the attack time for the targeting attacker
λN rate of the non-targeted attacks’ arrival

We let D, A, and N denote the defender, the targeting attacker, and the
non-targeting attackers, respectively. At any time instance, player i may make
a move, which costs her Ci. (Note that, for attackers, we will use the words
attack and move synonymously.) When the defender makes a move, the resource
becomes uncompromised immediately for every attacker. When the targeting
attacker makes a move, she starts her attack, which takes some random amount
of time. If the defender makes a move while an attack is in progress, the attack
fails. We assume that the time required by a targeted attack follows the same
distribution every time. Its cumulative distribution function is denoted by FA,
and is subject to FA(0) = 0. In practice, this distribution can be based on
industry-wide beliefs, statistics of previous attacks, etc.

The attackers’ moves are stealthy; i.e., the defender does not know when
the resource became compromised or if it is compromised at all. On the other
hand, the defender’s moves are non-stealthy. In other words, the attackers learn
immediately when the defender has made a move.
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The cost rate for player i up to time t, denoted by ci(t), is the number of
moves per unit of time made by player i up to time t, multiplied by the cost per
move Ci.

For attacker i ∈ {A,N}, the benefit rate bi(t) up to time t is the fraction
of time up to t that the resource has been compromised by i, multiplied by
Bi. Note that if multiple attackers have compromised the resource, they all
receive benefits until the defender’s next move. For the defender D, the benefit
rate bD(t) up to time t is −

∑
i∈{A,N} bi(t). The relation between defender and

attacker benefits implies that the game would be zero-sum if we only considered
the players’ benefits. Because our players’ payoffs also consider move costs, our
game is not zero-sum. Player i’s payoff is defined as

lim inf
t→∞

bi(t)− ci(t) . (1)

It is important to note that the asymptotic benefit rate lim inft→∞ bi(t) of
attacker i is equal to the probability that i has the resource compromised at
a random time instance, multiplied by Bi. For a discussion on computing the
payoffs for the key strategy profiles in this paper, see Appendix A.

3.1 Types of Strategies for the Defender and the Targeting Attacker

Not Moving A player can choose to never move. While this might seem
counter-intuitive, it is actually a best-response if the expected benefit from mak-
ing a move is always less than the cost of moving.

Adaptive Strategies for the Targeting Attacker Let T (n) = {T0, T1, . . . , Tn}
denote the move times of the defender up to her nth move (or in the case of
T0 = 0, the start of the game). The attacker uses an adaptive strategy if she
waits for W (T (n)) time until making a move after the defender’s nth move (or
after the start of the game), where W is a non-deterministic function. If the
defender makes her n+ 1st move before the chosen wait time is up, the attacker
chooses a new wait time W (T (n+ 1)), which also considers the new information
that is the defender’s n+ 1st move time. This class is a simple representation of
all the rational strategies available to an attacker, since W can depend on all the
information that the attacker has, and we do not have any constraints on W .

Renewal Strategies Player i uses a renewal strategy if the time intervals be-
tween consecutive moves are identically distributed independent random vari-
ables, whose distribution is given by the cumulative function FRi

. Renewal
strategies are well-motivated by the fact that the defender is playing blindly;
thus, she has the same information available after each move. So it makes sense
to use a strategy which always chooses the time until her next flip according to
the same distribution.

Periodic Strategies Player i uses a periodic strategy if the time intervals
between consecutive moves are identical. This period is denoted by δi. Periodic
strategies are a special case of renewal strategies.
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3.2 Non-Targeted Attacks

Suppose that there are N non-targeting attackers. In practice, N is very large,
but the expected number of attacks in any time interval is finite. Hence, as N
goes to infinity, the probability that a given non-targeting attacker targets the
defender approaches zero. Since non-targeting attackers operate independently
of each other, the number of successful attacks in any time interval depends
solely on the length of the interval. Thus, the arrival of successful non-targeted
attacks follows a Poisson process.

Furthermore, since the economic decisions of the non-targeting attackers de-
pend on a very large pool of possible targets, the effect of the defender’s be-
haviour on the non-targeting attackers’ strategies is negligible. Thus, the non-
targeting attackers’ strategies (that is, the arrival rate of the Poisson process)
can be considered exogenously given. We let λN denote the expected number of
arrivals that occur per unit of time; and we model all the non-targeting attackers
together as a single attacker whose benefit per unit of time is BN .

3.3 Comparison to FlipIt

Even though our game-theoretic model resembles FlipIt in many ways, it differs
in three key assumptions. First, we assume that the defender’s moves are non-
stealthy. The motivation for this is that, when the attacker receives benefits from
continuously exploiting the compromised resource, she should know whether
she has the resource compromised or not. For example, if the attacker uses the
compromised password of an account to regularly spy on its e-mails, she will learn
of a password reset immediately when she tries to access the account. Second,
we assume that the targeting attacker’s moves are not instantaneous, but take
some time. The motivation for this is that an attack requires some effort to be
carried out in practice. Furthermore, the time required for a successful attack
may vary, which we model using a random variable for the attack time. Third,
we assume that the defender faces multiple attackers, not only a single one.

Moreover, to the authors’ best knowledge, papers published on FlipIt so far
give analytical results only on a very restricted set of strategies. In contrast, we
completely describe our game’s equilibria and give optimal defender strategies
based on very mild assumptions, which effectively do not limit the power of
players (see the introduction of Section 4).

4 Analytical Results

In this section, we provide analytical results based on our model. We start with
a discussion of the players’ strategies.

Recall that the defender has to play blindly, which means that she has the
same information available after each one of her moves. Consequently, it makes
sense for her to choose the time until her next flip according to the same dis-
tribution each time. In other words, a rational defender can restrict herself to
using only renewal strategies.
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Now, if the defender uses a renewal strategy, the time of her next move
depends only on the time elapsed since her last move Tn, and the times of her
previous moves (including Tn) are irrelevant to the future of the game. Therefore,
it is reasonable to assume that the attacker’s response strategy to a renewal
strategy also does not depend on T0, T1, . . . , Tn. For the remainder of the paper,
when the defender plays a renewal strategy, the attacker uses a fixed probability
distribution – given by the density function fW – over her wait times for when
to begin her attack. Note that it is clear that there always exists a best-response
strategy of this form for the attacker against a renewal strategy.

Since the attacker always waits an amount of time that is chosen according
to a fixed probability distribution after the defender’s each move, the amount of
time until the resource would be successfully compromised after the defender’s
move also follows a fixed probability distribution. Let S be the random variable
measuring the time after the defender has moved until the attacker’s attack
would finish. The probability density function fS of S can be computed as

fS(s) =

∫ s

w=0

fW (w)

∫ (s−w)

a=0

fA(a) da dw . (2)

Finally, we let FS denote the cumulative distribution function of S.

4.1 Best Responses

Defender’s Best Response We begin our analysis with finding the defender’s
best-response strategy.

Lemma 1. Suppose that the non-targeted attacks arrive according to a Poisson
process with rate λN , and the targeting attacker uses an adaptive strategy with
a fixed wait time distribution FW . Then,
– not moving is the only best response if CD = D(l) has no solution for l > 0,

where

D(l) = BA

(
lFS(l)−

∫ l

s=0

FS(s) ds

)
+BN

(
−le−λN l +

1− e−λN l

λN

)
; (3)

– the periodic strategy whose period is the unique solution to CD = D(l) is the
only best response otherwise.

The proof of the lemma can be found in Appendix B.1.
Even though we cannot express the solution of CD = D(l) in closed form, it

can be easily found using numerical methods, as the right hand side is continuous
and increasing.4 Note that all the equations presented in the subsequent lemmas
and theorems of this paper can also be solved by applying numerical methods.

Lemma 2. Suppose that the non-targeted attacks arrive according to a Poisson
process with rate λN , and the targeting attacker never attacks. Then,

4 We show in the proof of the lemma that the right hand side is increasing in l.
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– not moving is the only best response if CD = DN (l) has no solution for l > 0,
where

DN (l) = BN

(
−le−λN l +

1− e−λN l

λN

)
; (4)

– the periodic strategy whose period is the unique solution to CD = DN (l) is
the only best response otherwise.

Proof. Follows readily from the proof of Lemma 1 with the terms belonging to
the targeting attacker omitted everywhere. ut

Observe that D(0) = DN (0) < 0 and D(l) ≥ DN (l). Consequently, CD =
D(l) has a solution whenever CD = DN (l) has one. Furthermore, if both have
solutions, the solution of CD = D(l) is less than or equal to the solution of
CD = DN (l). In other words, the defender is more likely to keep moving if there
is a threat of targeted attacks, and she will move at least as frequently as she
would if there was no targeting attacker.

Attacker’s Best Response We continue our analysis with finding the at-
tacker’s best-response strategy.

Lemma 3. Against a defender who uses a periodic strategy with period δD,
– never attacking is the only best response if CA > A(δD), where

A(δ) = BA

∫ δ

a=0

FA(a)da ; (5)

– attacking immediately after the defender has moved is the only best response
if CA < A(δD);

– both not attacking and attacking immediately are best responses otherwise.

The proof of the lemma can be found in Appendix B.2.
The lemma shows that the targeting attacker should either attack immedi-

ately or not attack at all, but she should never wait to attack. For the never
attack strategy, we already have the defender’s best response from Lemma 2.
For the attacking immediately strategy, the defender can determine the optimal
period of her strategy solely based on the distribution of A, which is an exoge-
nous parameter of the game. More formally, the defender’s best response is not
to move if CD = DA(l) has no solution, and it is a periodic strategy whose period
is the unique solution to CD = DA(l) otherwise, where

DA(l) = BA

(
lFA(l)−

∫ l

a=0

FA(a) da

)
+BN

(
−le−λN l +

1− e−λN l

λN

)
. (6)

This follows readily from Lemma 1 by substituting FS for FA.5

5 Recall that S was defined as the sum of the waiting time W , which is always zero
in this case, and the attack time A.
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4.2 Nash Equilibria

Based on the previous lemmas, we can describe all the equilibria of the game (if
there are any) as follows.

Theorem 1. Suppose that the defender uses a renewal strategy, the targeting
attacker uses an adaptive strategy, and the non-targeted attacks arrive according
to a Poisson process. Then, the game’s equilibria can be described as follows.
1. If CD = DA(l) does not have a solution for l, then there is a unique equilib-

rium in which the defender does not move and in which the targeting attacker
moves once at the beginning of the game.

2. If CD = DA(l) does have a solution δD for l:
(a) If CA ≤ A(δD), then there is a unique equilibrium in which the defender

plays a periodic strategy with period δD, and the targeting attacker moves
immediately after each of the defender’s moves.

(b) If CA > A(δD),
i. if CD = DN (l) has a solution δ′D for l, and CA ≥ A(δ′D), then there

is a unique equilibrium in which the defender plays a periodic strategy
with period δ′D, and the targeting attacker never moves;

ii. otherwise, there is no equilibrium.

The proof of the theorem can be found in Appendix B.3. For an illustration
of the hierarchy of the theorem’s criteria, see Figure 1. Finally, recall that a
discussion on the payoffs can be found in Appendix A.

CD = DA(l) does not
have a solution:

equilibrium
(attacker at advantage)

CD = DA(l) has a solution δD

CA ≤ A(δD):
equilibrium

(no player at advantage)

CA > A(δD)

CD = DN (l) has a solution δ′D
and CA ≥ A(δ′D):

equilibrium
(defender at advantage)

otherwise:
no equilibrium

(defender at advantage)

Fig. 1: Illustration for the hierarchy of criteria in Theorem 1.

In the first case, the attacker is at an overwhelming advantage, as the relative
cost of defending the resource is prohibitively high. Consequently, the defender
simply “gives up,” as any effort to protect the resource is not profitable, and the
attacker will eventually have the resource compromised indefinitely (see Figure
2 for an illustration). In the second case, no player is at an overwhelming advan-
tage. Both players are actively moving, and the resource gets compromised and
uncompromised from time to time. In the third and fourth cases, the defender
is at an overwhelming advantage. However, this does not necessarily lead to an
equilibrium. If the defender moves with a sufficiently high rate, she makes mov-
ing unprofitable for the targeting attacker. But if the targeting attacker decides
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t
0

Pr

1

0

(a) Case 1.

t
0 δ 2δ

Pr

1

0

(b) Case 2. (a)

t
0

Pr

1

0

(c) Case 2. (b) i.

Fig. 2: The probability that the targeting attacker has compromised the resource
(vertical axis) as a function of time (horizontal axis) in various equilibria (see
Theorem 1 for each case). Note that these are just examples, the actual shapes
of the function depend on FA.

not to move, then the defender switches to a lower move rate, which is optimal
against only non-targeted attacks. However, once the defender switches to the
lower move rate, it might again be profitable for the targeting attacker to move,
which would in turn trigger the defender to switch back to the higher move rate.

4.3 Sequential Game: Deterrence by Committing to a Strategy

So far, we have modeled the mitigation of covert compromises as a simultaneous
game. This is realistic for scenarios where neither the defender nor the target-
ing attacker can learn the opponent’s strategy choice in advance. However, in
practice, the defender can easily let the targeting attacker know her strategy
by publicly announcing it. Even though one of the key elements of security is
confidentiality, the defender can actually gain from revealing her strategy – as
we will show in Section 5 – since this allows her to deter the targeting attacker
from moving.

In this section, we model the conflict as a sequential game, where the de-
fender chooses her strategy before the targeting attacker does. We assume that
the defender announces her strategy (e.g., publicly commits herself to a cer-
tain cryptographic-key update policy) and the targeting attacker chooses her
best response based on this knowledge. Furthermore, in this section, we restrict
the defender’s strategy set to periodic strategies and not moving. The following
theorem describes the defender’s subgame perfect equilibrium strategies.

Theorem 2. Let δ1 be the solution of CD = DA(δ) (if any), δ2 be the maximal
period δ for which CA = A(δ), and δ3 be the solution of CD = DN (δ) (if any).
In a subgame perfect equilibrium, the defender’s strategy is one of the following:
– not moving,
– periodic strategies with periods {δ1, δ2, δ3}.

The proof of the theorem can be found in Appendix B.4.
Based on the above theorem, one can easily find all subgame perfect equilibria

by iterating over the above strategies and, for each strategy, computing the
targeting attacker’s best response using Lemma 3, and finally comparing the
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defender’s payoffs to find her equilibrium strategy (or strategies). Note that, for
each case of Theorem 1, the set of possible equilibrium strategies in Theorem 2
could be restricted further. For example, in Case 2. (b) i., the only subgame
perfect equilibrium is the defender moving periodically with δ′D and the targeting
attacker never moving. We defer the remaining cases to future work.

5 Numerical Illustrations

In this section, we present numerical results on our game. For the illustrations,
we instantiate our model with the exponential distribution as the distribution
of the attack time. For rate parameter λA, the cumulative distribution function
of the exponential distribution is FA(a) = 1− e−λAa. For the remainder of this
section, unless indicated otherwise, the parameters of the game are CD = CA =
BA = λA = λN = 1 and BN = 0.1. Finally, we refer to the simultaneous-game
Nash equilibria simply as equilibria, and we refer to the defender’s subgame
perfect equilibrium strategies as optimal strategies (because they maximize the
defender’s payoff given that the targeting attacker will play her best response).

First, in Figure 3, we study the effects of varying the value of the resource,
that is, the unit benefit BA received by the targeting attacker. Figure 3a shows
the equilibrium payoffs as functions of BA (the defender’s period for the same
setup is shown by Figure 3c). The defender’s payoff is strictly decreasing, which
is not surprising: the more valuable the resource is, the higher the cost of security
is. The targeting attacker’s payoff, on the other hand, starts growing linearly,
but then suffers a sharp drop, and finally converges to a finite positive value.

For lower values (BA < 0.9), the defender does not protect the resource, as
it is not valuable enough. Accordingly, Figure 3c shows no period for this range,
and the targeting attacker’s payoff is the value of the resource BA. However, once
the value reaches about 0.9, the defender starts protecting the resource. Hence,
the targeting attacker’s payoff drops as she no longer always has the resource.
For higher values, the defender balances between losses and costs, which means
that the time the resource is compromised decreases as its value increases.

Figure 3b shows the payoffs for the defender’s optimal strategy as functions
of BA (the optimal period is shown by Figure 3d). The figure shows that the
defender’s strategy for this range of BA is always to deter the targeting attacker
(hence, the targeting attacker’s payoff is zero). To achieve this, the defender is
using a strictly shorter period than her equilibrium period. Interestingly, the
defender’s payoff is much higher compared to her equilibrium payoff.

In Figure 4, we study the effects of varying the defender’s move cost CD.
Figure 4a shows the equilibrium payoffs as functions of CD (the defender’s period
for the same setup is shown by Figure 4c). The figure shows that the defender’s
payoff is decreasing, while the targeting attacker’s payoff is increasing, which is
unsurprising: the more costly it is to defend, the greater the attacker’s advantage.

For lower costs (CD < 0.6), the defender is at an overwhelming advantage,
but there is no equilibrium (Case 2. (b) ii. of Theorem 1). For costs between 0.6
and 1.09, no player is at an overwhelming advantage; hence, both players move
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BA

0.2 30.9
−3

1.5

0

(a) The defender’s and the targeting at-
tacker’s payoffs (solid and dashed lines, re-
spectively) in equilibria as functions of BA.

BA

0.2 3
−3

1.5

0

(b) The defender’s and the targeting at-
tacker’s payoffs for the defender’s optimal
strategy as functions of BA.

BA

0.2 30.9
0

8

(c) The defender’s equilibrium period as a
function of BA.

BA

0.2 3
0

8

(d) The defender’s optimal period as a
function of BA.

Fig. 3: The effects of varying the unit benefit BA of the targeting attacker.

from time to time. For higher costs, the targeting attacker is at an overwhelming
advantage. In this case, the defender never moves, while the attacker moves once.
Hence, their payoffs are BA +BN = −1.1 and BA = 1, respectively.

Figure 4b shows the payoffs for the defender’s optimal strategy as functions of
CD (the optimal period is shown by Figure 4d). The defender’s optimal strategy
for move costs lower than 1.93 is to deter the targeting attacker. Hence, the
targeting attacker’s payoff is zero. The defender’s payoff decreases linearly as
the cost of deterrence increases. Again, we see that the defender’s payoff is much
higher than her equilibrium payoff. However, for higher move costs, she must
give up defending the resource, as in her equilibrium strategy for this range.

6 Conclusions

In this paper, we studied the mitigation of both targeted and non-targeted covert
attacks. As our main result, we found that periodic mitigation is the most effec-
tive strategy against both types of attacks and their combinations. Considering
the simplicity of this strategy, our result can be surprising, but it also serves as a
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CD

0.2 2.30.6 1.09

−1.1

0

1

(a) The defender’s and the targeting at-
tacker’s payoffs (solid and dashed lines, re-
spectively) in equilibria as functions of CD.

CD

0.2 2.31.93

−1.1

0

1

(b) The defender’s and the targeting at-
tacker’s payoffs for the defender’s optimal
strategy as functions of CD.

CD

0.2 2.30.6 1.09
0

8

(c) The defender’s equilibrium period as a
function of CD.

CD

0.2 2.31.93
0

8

(d) The defender’s optimal period as a
function of CD.

Fig. 4: The effects of varying the defender’s move cost CD.

theoretical justification for the prevalent periodic password and cryptographic-
key renewal practices. Moreover, this result contradicts the lesson learned from
the FlipIt model [19], which suggests that a defender facing an adaptive at-
tacker should use an unpredictable, randomized strategy.

Further, a defender is more willing to commit resources to defensive moves
when being threatened by non-targeted and targeted attacks at the same time.
This stands in contrast to the result that a high level of either threat type can
force the defender to abandon defensive activities altogether.

Finally, we observed that there is an important difference between the de-
fender’s simultaneous and sequential (i.e., optimal) equilibrium strategies, both
in the lengths of the periods and the resulting payoffs. Thus, a defender should
not try to keep her strategy secret, but rather publicly commit to it.
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A Payoffs

Defender Not Moving, Attacker Moving If the defender does not move,
and the targeting attacker moves once after waiting a finite (possibly zero)
amount of time, then both types of attacks will eventually have the resource
compromised indefinitely. Thus, the asymptotic probability of the resource be-
ing compromised is 1 for both types of attacks. Consequently, the defender’s
payoff is

−BA −BN , (7)

while the targeting attacker’s payoff is

BA . (8)

Note that the targeting attacker bears zero moving cost because she moves once
in an infinite amount of time.

Defender Moving Periodically, Attacker Not Moving Let δD denote the
period of the defender’s strategy. Then, the expected amount of time that the
non-targeting attackers have the resource compromised in one period is∫ δD

a=0

(δD − a)λNe
−λNa da . (9)

The first factor, (δD − a), is the amount of time that the resource will be com-
promised if the attack arrives a time after the start of the period, and the second
factor, λNe

−λNa, is the probability density of the attack arriving after a time. We
have that the defender loses BN per unit of time the resource is compromised.
Thus, her average loss per unit of time due to non-targeted attacks is

BN
∫ δD
a=0

(δD − a)λNe
−λNa da

δD
. (10)

By also taking her moving costs into account, we have that the defender’s
payoff is

BN
∫ δD
a=0

(δD − a)λNe
−λNa da− CD

δD
, (11)

while the targeting attacker’s payoff is obviously 0.

Defender Moving Periodically, Attacker Moving Immediately From the
previous case, we already have a formula for the defender’s losses due to non-
targeted attacks. Using the same argument, we have that the expected amount
of time that the targeting attacker has the resource compromised in a single
period is ∫ δD

a=0

(δD − a)fA(a) da , (12)
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and the average loss per unit of time due to targeted attacks is

BA
∫ δD
a=0

(δD − a)fA(a) da

δD
. (13)

By also taking the move cost (CD for the defender and CA for the attacker)
for each period into account, we have that the defender’s payoff is

−BA
∫ δD
a=0

(δD − a)fA(a) da−BN
∫ δD
a=0

(δD − a)λNe
−λNa da− CD

δD
(14)

=
−
∫ δD
a=0

(δD − a)BAfA(a) +BNλNe
−λNa da− CD

δD
, (15)

and the targeting attacker’s payoff is

BA
∫ δD
a=0

(δD − a)fA(a) da− CA
δD

. (16)

B Proofs

B.1 Proof of Lemma 1

Proof. When playing a renewal strategy, the defender randomly selects the in-
tervals between her consecutive moves according to the distribution generating
her strategy. In a best response, her strategy and, hence, every interval length
in the support of the generating distribution has to maximize her expected pay-
off per unit of time. In other words, every interval length has to minimize her
expected loss per unit of time. The defender’s expected loss per unit of time for
an interval of length l is

1

l

(
BA

∫ l

s=0

(l − s)fS(s) ds+BN

∫ l

a=0

(l − a)λNe
−λNada+ CD

)
(17)

=
1

l

(
BA

(
[(l − s)FS(s)]

l
s=0 −

∫ l

s=0

(−1)FS(s) ds

)

+BN

(
e−λN l − 1

λN
+ l

)
+ CD

)
(18)

=
1

l

(
BA

(
FS(l) (l − l)︸ ︷︷ ︸

0

−FS(0)︸ ︷︷ ︸
0

(l − 0) +

∫ l

s=0

FS(s) ds

)
(19)

+BN

(
e−λN l − 1

λN
+ l

)
+ CD

)
(20)

=
1

l

(
BA

∫ l

s=0

FS(s) ds+BN

(
e−λN l − 1

λN
+ l

)
+ CD

)
. (21)
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To find the minimizing interval lengths (if there exists any), we take the
derivative of (21) and solve it for equality with 0 as follows:

0 =
d

dl

[
1

l

(
BA

∫ l

s=0

FS(s) ds+BN

(
e−λN l − 1

λN
+ l

)
+ CD

)]
(22)

0 =− 1

l2

(
BA

(∫ l

s=0

FS(s) ds− lFS(l)

)
+BN

e−λN l(λN l − eλN l + 1)

λN
+ CD

)
(23)

CD =BA

(
lFS(l)−

∫ l

s=0

FS(s) ds

)
+BN

(
−le−λN l +

1− e−λN l

λN

)
. (24)

Firstly, it is easy to see that the first term of the right hand side of the above
equation is a non-decreasing function of l, as FS is a non-negative, non-decreasing
function. Secondly, the second term is strictly increasing, as its derivate is
λN le

−λN l > 0. Thus, the right hand side of Equation (24) is strictly increas-
ing as a function of l. Consequently, if there is any solution l∗ to the above
equation, then it has to be unique. Furthermore, this value of l is a minimizing
value for the expected loss per unit of time as the second derivative at l∗ is
greater than zero:

d

dl

[
− 1

l2

(
BA

(∫ l

s=0

FS(s) ds− lFS(l)

)
+BN

e−λN l(λN l − eλN l + 1)

λN
+ CD

)]
(25)

=
1

l3

(
BA

(
2

∫ l

s=0

FS(s) ds− 2lFS(l) + l2fS(l)

)

+BN
e−λN l(λ2

N l
2 + 2λN l − 2eλN l + 2)

λN
+ 2CD

)
. (26)

We care about the value of this expression when the first derivative is zero.
Using this constraint, we obtain

1

l3

(
BA

(
2

∫ l

s=0

FS(s) ds− 2lFS(l) + l2fS(l)

)

+BN
e−λN l(λ2

N l
2 + 2λN l − 2eλN l + 2)

λN
+ 2CD

)
(27)

=
2

l3

(
BA

(∫ l

s=0

FS(s) ds− lFS(l)

)
+BN

e−λN l(λN l − eλN l + 1)

λN
+ CD︸ ︷︷ ︸

first derivate ·(−l2)

)

+
1

l

(
BAfS(l) +BNe

−λN lλN

)
(28)
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=
2

l3

(
0
)

+
1

l

(
BA fS(l)︸ ︷︷ ︸

≥0

+BN e
−λN l︸ ︷︷ ︸
>0

λN

)
> 0 . (29)

Thus, if Equation (24) has a solution for l, then this solution is the only interval
length that minimizes the defender’s loss. Consequently, her only best response
is the periodic strategy with the minimizing l∗ as the period.

On the other hand, if Equation (24) is not satisfiable for l, then her only
best response for the defender is to never move. When l → ∞, the defender’s
expected loss per unit of time approaches BA + BN , which is equal to her loss
when she never moves. When l → 0, her expected loss per unit of time goes to
infinity due to the ever increasing costs. Consequently, if there is no minimizing
l, then the defender’s expected loss per unit of time is greater than BA+BN for
every interval length l. ut

B.2 Proof of Lemma 3

Proof. First, assume that the attacker does attack. Given that the attacker waits
w < δD time before making her move, the expected amount of time she has the
resource compromised until the defender’s next move is∫ δD−w

a=0

fA(a)(δD − w − a) da . (30)

It is easy to see that the maximum of this equation is attained for w = 0. There-
fore, if the attacker does attack, she attacks immediately. Then, the expected
amount of time she has the resource compromised until the defender’s next move
is ∫ δD

a=0

fA(a)(δD − a) da (31)

= [FA(a)(δD − a)]
δD
a=0 −

∫ δD

a=0

FA(a)(−1) da (32)

=FA(δD)(δD − δD︸ ︷︷ ︸
0

)− FA(0)︸ ︷︷ ︸
0

(δD − 0) +

∫ δD

a=0

FA(a) da (33)

=

∫ δD

a=0

FA(a) da . (34)

Therefore, if the attacker does attack, her asymptotic benefit rate is

BA

∫ δD
a=0

FA(a)da

δD
, (35)

and her payoff is

BA

∫ δD
a=0

FA(a)da

δD
− CA
δD

. (36)
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Thus, when (36) is less than or equal to zero, never attacking is a best-response
strategy; when (36) is greater than or equal to zero, always attacking immediately
is a best-response strategy. Finally, when (36) is equal to zero, the attacker can
decide whether to attack immediately or not to attack at all after each move of
the defender, as both choices maximize her payoff. ut

B.3 Proof of Theorem 1

Proof. First, we have from Lemma 1 that, in any equilibrium, the defender either
never moves or uses a periodic strategy. If the defender never moves, then the
attacker’s best response is to wait a finite (possibly zero) amount of time after the
game starts, as she will eventually compromise the resource indefinitely. On the
other hand, if the defender moves using a periodic strategy, we have from Lemma
3 that the attacker either never attacks or attacks immediately. This leaves
us with two strategies for defender (never moving or moving periodically) and
three strategies for the targeting attacker (never moving, moving immediately,
or waiting a finite non-zero amount of time) from which all equilibria must be
composed. Next, we show that only three combinations of these strategies can
form equilibria.

It is easy to see that if the defender never moves, the attacker’s only best re-
sponse is to wait a finite (possibly zero) amount of time, since she will eventually
compromise the resource indefinitely. Consequently, there is no equilibrium in
which both the defender and the targeting attacker are not moving. This leaves
us with three possible strategy profiles for the equilibria: the defender moving
periodically and the targeting attacker never attacking, the defender moving
periodically and the targeting attacker attacking immediately, and the defender
never moving and targeting attacker moving after a finite (possibly zero) amount
of time.

Now, we prove the theorem case-by-case.

– If CD = DA(l) does not have a solution for l, then neither does CD = DN (l).
Thus, the defender’s best response is not moving, regardless of whether the
targeting attacker uses some short waiting time or never attacks (Lemmas 1
and 2). Note that, however, if the attacker uses some long (but finite) waiting
time, moving might be a best response for the defender. Consequently, in
order for an equilibrium to exist, the attacker has to use some short waiting
time (we know that there is at least one waiting time that is short enough:
0, i.e., attacking immediately). Therefore, the only possible equilibrium is
the defender never moving and the targeting attacker moving after a short
(possibly) zero amount of time. Since this is a best response for the attacker
(Lemma 3), this is a unique equilibrium (we do not distinguish between the
short waiting times here, as they lead to the same payoffs and are equivalent
in effect).

– If CD = DA(l) does have a solution δD for l, then the defender not moving
but the targeting attacker moving cannot be an equilibrium, since not moving
would not be a best response for the defender (Lemma 1). Thus, for all



20 Aron Laszka, Benjamin Johnson, and Jens Grossklags

remaining cases, we are left with two strategy profiles for the equilibria
(the defender moving periodically and the attacker never moving or moving
immediately).

Now, if CA ≤ A(δD), then the attacker’s best response to the defender
moving periodically with period δD is to attack immediately (Lemma 3).6

Thus, both players moving is an equilibrium. We show that this equilibrium
is unique. For the sake of contradiction, assume that this is not true, in
other words, there exists an equilibrium in which the defender uses another
period δ̃D. Clearly, the attacker’s strategy in this equilibrium has to be never
moving: if the attacker was moving, then the defender’s unique best response
would be δD (Lemma 1). Thus, CA > A(δ̃D) has to hold, which implies that
δ̃D < δD since A(δ) is increasing in δ and CA ≤ A(δD). But this leads to a
contradiction, as the defender’s best response to the targeting attacker not
moving is a period that is longer than δD (discussion of Lemma 2). Therefore,
the defender moving with period δD and the attacker moving immediately
is a unique equilibrium.

– On the other hand, if CA > A(δD), then the attacker’s best response to the
defender moving with period δD is to never move (Lemma 3). Thus, both
players moving cannot be an equilibrium: if the attacker moves, then the
defender’s best response is to move with period δD, but the attacker’s best
response to this strategy is to never move. This leaves us with one possi-
ble equilibrium, in which the defender moves periodically and the targeting
attacker never moves.

Now, if CD = DN (l) has a solution δ′D, then the defender’s best response to
the attacker not moving is to move periodically with period δ′D. Furthermore,
if CA ≥ A(δ′D), the attacker’s best response to this period is not to move.7

Thus, the defender moving with period δ′D and the attacker not moving is
an equilibrium.

– Finally, if CD = DN (l) does not have a solution, then the defender’s best
response to the targeting attacker never attacking is not to move (Lemma 2).
On the other hand, if CD = DN (l) has a solution δ′D and CA < A(δ′D), then
the attacker’s best response is to attack immediately (Lemma 3). Conse-

6 Note that in the special case of CA = A(δD), the attacker has two best responses
(moving immediately and never moving). Clearly, both players moving is an equilib-
rium as both play their best responses. On the other, if the attacker chooses not to
move, then the defender’s best response will either be a longer period δ′D (the solu-
tion to CD = D(δ)) or never moving. However, it is easy to see that CA < A(δ′D), as
A(l) is strictly increasing on (δD,∞) since A(δD) > 0. Consequently, the attacker’s
best response would no longer be not to move. Therefore, both players moving is a
unique equilibrium.

7 Again, in the special case of CA = A(δ′D), the attacker has two best responses
(similarly to footnote 6): moving immediately and never moving. If the attacker
chooses not to move, we obviously have an equilibrium. On the other hand, if the
attacker choose to move, the defender switches to the shorter period δD. But we
already have that the attacker’s best response to this strategy is not to move. Thus,
both players moving cannot be an equilibrium.
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quently, the defender moving periodically and the targeting attacker moving
immediately cannot be an equilibrium. Therefore, in this case, the game does
not have an equilibrium. ut

B.4 Proof of Theorem 2

Proof. For the sake of contradiction, suppose that there exists a subgame perfect
equilibrium where the defender uses another period δ′.

First, assume that δ′ > δ2. In this case, we show that, given that the attacker
will always play her best response, either δ1 or not moving yields a strictly
greater payoff to the defender than δ′. From Lemma 3 and the definition of
δ2, we have that the targeting attacker’s best response to δ′ in this case is
to always attacks immediately. From Lemma 1, we have that the defender’s
unique payoff-maximizing strategy for the attacker moving immediately is not
moving if δ1 does not exists, and a periodic strategy with the period δ1 if it does
exist. Now, if δ1 does not exist or if it is greater than δ2, then these strategies
yield a strictly greater payoff than moving with period δ′, while keeping the
attacker’s best response the same. On the other hand, if δ1 ≤ δ2, then moving
with δ1 deters the attacker from attacking. It is easy to see that this yields a
higher payoff to the defender than δ′, as δ1 is a better response to the attacker
moving immediately than δ′, and deterring the attacker only further decreases
the defender’s loss. Thus, δ′ cannot be an equilibrium strategy, which contradicts
the initial supposition.

Second, assume that δ′ < δ2. In this case, we show that, given that the
attacker will always play her best response, either δ2 or δ3 yields a strictly
greater payoff to the defender than δ′. From Lemma 3 and the definition of δ2,
we have that the targeting attacker’s best response to δ′ in this case is never
to move. From Lemma 2, we have that the defender’s unique payoff-maximizing
strategy for the attacker never moving is not to move if δ3 does not exist, and
a periodic strategy with period δ3 if it does exist. Now, if δ3 exists and it is
less than or equal to δ2, then moving with δ3 instead of δ′ strictly increases the
defender’s payoff, while keeping the attacker’s best-response the same. On the
other hand, if δ3 does not exist or if it is greater than δ2, the derivate of the
defender’s payoff as a function of her period is positive on (0, δ2) (see the proofs
of Lemmas 1 and 2). Consequently, the defender’s payoff is strictly greater for
any period in (δ′, δ2) than for δ′. Thus, δ′ cannot be an equilibrium strategy,
which contradicts the initial supposition. Therefore, the claim of the theorem
must hold. ut
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