
Linear Loss Function for the Network Blocking
Game: An Efficient Model for Measuring
Network Robustness and Link Criticality

Aron Laszka1, Dávid Szeszlér2, and Levente Buttyán1

1 Laboratory of Cryptography and System Security,
Department of Telecommunications,

Budapest University of Technology and Economics
{laszka, buttyan}@crysys.hu

2 Department of Computer Science,
Budapest University of Technology and Economics

szeszler@cs.bme.hu

Abstract. In order to design robust networks, first, one has to be able
to measure robustness of network topologies. In [1], a game-theoretic
model, the network blocking game, was proposed for this purpose, where
a network operator and an attacker interact in a zero-sum game played
on a network topology, and the value of the equilibrium payoff in this
game is interpreted as a measure of robustness of that topology. The
payoff for a given pair of pure strategies is based on a loss-in-value
function. Besides measuring the robustness of network topologies, the
model can be also used to identify critical edges that are likely to be
attacked. Unfortunately, previously proposed loss-in-value functions are
either too simplistic or lead to a game whose equilibrium is not known
to be computable in polynomial time. In this paper, we propose a new,
linear loss-in-value function, which is meaningful and leads to a game
whose equilibrium is efficiently computable. Furthermore, we show that
the resulting game-theoretic robustness metric is related to the Cheeger
constant of the topology graph, which is a well-known metric in graph
theory.

Keywords: game theory, adversarial games, network robustness, com-
putational complexity, blocking games, Cheeger constant

1 Introduction

In order to be able to design networks that resist malicious attacks and accidental
failures, one must be able, first of all, to measure the robustness of network
topologies. A number of graph-theoretic robustness metrics, such as node and
edge connectivity, graph strength [2], toughness [3], and persistence [4], can be
used for this purpose. Recently, however, another approach for measuring the
robustness of network topologies has been proposed by Gueye et al. in a series
of papers [5,6,1]. In their approach, the robustness of a network topology is

characterized by the equilibrium payoff in a two-player zero-sum game played
by a network operator and an attacker.

In this model, the network operator chooses a spanning tree of the topology
graph to be used for routing messages in the network, and simultaneously, the
attacker chooses an edge of the topology graph to be removed. If the edge chosen
by the attacker happens to be in the spanning tree chosen by the operator, then
the attacker’s payoff is positive and the operator’s payoff is negative, otherwise
they both receive 0 as payoff. In the former case, the actual value of the payoff
depends on the loss-in-value function that is used for characterizing the effect
of an edge being removed from the spanning tree. For instance, in [5], a simple
indicator function is used: if the edge removed by the attacker is in the spanning
tree, then the attacker’s payoff is 1, otherwise it is 0. Another example is given
in [7], where the payoff for the attacker is equal to the number of nodes that the
attacker separates from a designated node in the spanning tree (e.g., a gateway
in an access network) by removing the chosen edge.

The optimal strategies of such an attacker-defender game can be used to
identify critical edges that are likely to be attacked, and the equilibrium payoff
can be interpreted as a measure of robustness of the network topology at hand.
In some cases, the game-theoretic robustness of a network may even be directly
related to a graph-theoretic robustness metric. For instance, in [7], it is shown
that the equilibrium payoff of the game where the loss-in-value function is defined
as the number of nodes that the attacker separates from a designated node in
the network is equal to the reciprocal of the persistence of the network as defined
in [4]. Hence, the game-theoretic model can provide additional insights into the
understanding of the graph-theoretic robustness metrics.

Unfortunately, the loss-in-value functions of [5] and [7] can not be used gener-
ally: The former is too simplistic as it does not take into account the magnitude
of the damage caused by the attack. The latter is concerned with only those
types of networks, where the nodes have to communicate only with a designated
node, such as access and sensor networks. In [1], a number of loss-in-value func-
tions, derived from previously proposed network value functions, are introduced
and studied. However, to the best of our knowledge, finding efficient algorithms
to compute the equilibrium payoff or the optimal strategies in case of these
loss-in-value functions is still an open question.

Our contributions in this paper are the following: We propose a new, lin-
ear loss-in-value function, for which we also provide strongly polynomial-time
algorithms to compute optimal adversarial and operator strategies and, thus,
the payoff in the Nash equilibria of the game. This means that we can compute
the game-theoretic robustness efficiently in case of this linear loss-in-value func-
tion. Moreover, our proposed linear loss-in-value function is meaningful in the
sense that it is lower- and upper-bounded by loss-in-value functions previously
proposed in [1]. In addition, we prove that the payoff in the Nash equilibria is
closely related to the Cheeger constant of a graph (also called minimum edge
expansion or isoperimetric number), a well-known metric in graph theory. Thus,

we can relate the game-theoretic robustness metric resulting from the proposed
loss-in-value function to a graph-theoretic robustness notion.

The organization of this paper is the following: In Section 2, we briefly sum-
marize previous related results. In Section 3, we describe the game model and
introduce our linear loss-in-value function. In Section 4 and 5, we propose op-
timal operator and adversarial strategies and show how to compute them very
efficiently. In Section 6, we combine the results of the previous sections to study
the Nash equilibria of the game. In Section 7, we discuss properties of the opti-
mal adversarial strategies. In Section 8, we show how the equilibrium payoff is
related to the Cheeger constant. In Section 9, we generalize the game model to
allow nodes with non-uniform weights. Finally, in Section 10, we conclude the
paper.

2 Related Work

In [5], the strategic interactions between a network operator, whose goal is to
keep a network connected, and an attacker, whose goal is to disconnect the
network, were modeled as a two-player, one-shot, zero-sum game: The operator
chooses a spanning tree T of the network G as the communication infrastructure
while the adversary chooses a link e as the target of her attack. The payoff of
the adversary (or the loss of the operator) is 1e∈T , i.e., it is 1 if the targeted link
is part of the chosen spanning tree, and 0 otherwise 3 . It was shown that the
payoff in every Nash equilibrium of the game is equal to the reciprocal of the
(undirected) strength of the network σ(G), which can be computed efficiently.
Furthermore, an efficient algorithm was provided to compute an optimal adver-
sarial strategy.

In [6], the model was generalized to include link attack costs, which can
vary based on the targeted links, resulting in a non-zero-sum game. Efficient
algorithms were provided to compute the payoff in the Nash equilibria and to
obtain an optimal adversarial strategy.

In [8], the model was generalized to incorporate link faults, which are ran-
dom malfunctions independent of the adversary. In this model of interdependent
reliability and security, the operator knows the distribution of link faults and
the relative frequencies of faults and attacks, while the role of the adversary
remains the same as in the basic model. Efficient algorithms were provided for
two particular link fault distributions, the uniform distribution and a special
distribution with a critical link being more vulnerable.

In [1], the indicator function 1e∈T was replaced with a general loss-in-value
function λ(T, e), which quantifies the gain of the adversary and the loss of the
operator when link e is targeted and communication is carried over tree T .
Previously proposed models for the value of a network were used to derive various
loss-in-value functions. Some of the proposed loss-in-value functions (Metcalfe,

3 The details of the model are described in Section 3. Here, we only introduce the
basic concepts that are necessary to the discussion of related work.

Reed, BOT), as well as the indicator loss-in-value function 1e∈T (termed GWA)
are plotted in Figure 1.

In [7], the interactions in a many-to-one network, such as an access network or
sensor network, were studied using a special loss-in-value function. The proposed
function measures the number (or total value) of the nodes that are separated
from a designated node when an attack occurs. It was shown that the payoff in
every Nash equilibrium of the game is equal to the reciprocal of the persistence
(or directed strength) of the network π(G), which can be computed efficiently.
Furthermore, efficient algorithms were provided to compute optimal operator
and adversarial strategies.

3 Game Model

The network topology is represented by a connected undirected simple graph
G = (V,E). The goal of the network operator is to keep the nodes of the network
connected to each other, while the goal of the adversary is to separate the nodes
from each other.

The interaction between the network operator and the adversary is modeled
as a two-player, one-shot, zero-sum game. The network operator chooses a span-
ning tree to be used for communications. The mixed strategy of the network
operator is a distribution on the set of spanning trees T (G), i.e., A := {α ∈
R|T (G)|
≥0 |

∑
T∈T (G) αT = 1}. The adversary chooses an edge to be attacked. The

mixed strategy of the adversary is a distribution on the set of edges E(G), i.e.,

B := {β ∈ R|E(G)|
≥0 |

∑
e∈E(G) βe = 1}.

The payoff of the adversary (or the loss of the operator) is given by the
loss-in-value function λ(T, e). Thus, the expected payoff of the adversary is∑

e∈E(G)

∑
T∈T (G)

αTβeλ(T, e) , (1)

which the adversary tries to maximize and the operator tries to minimize.

3.1 Our Proposed Loss Function

In this paper, we propose a “linear” loss-in-value function, denoted by λ(T, e),
where T and e are the spanning tree and edge chosen by the operator and the
adversary, respectively. If e ∈ T , then let λ(T, e) be the number of nodes in the
smaller component of G[T \{e}], where G[F] denotes the graph G′ = (V (G), F),
i.e., λ(T, e) is the number of nodes that are separated from the larger connected
component after the attack. If e 6∈ T , then let λ(T, e) = 0, i.e., there is no loss if
the spanning tree remains intact. More formally:

Definition 1 (Linear loss-in-value function).

λ(T, e) :=

{
minC∈ components of G[T\{e}] |C|, if e ∈ T
0, if e 6∈ T .

(2)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

N
or

m
al

iz
ed

 lo
ss

Component size in G[T \{e}]

GWA
Metcalfe

Reed
BOT

Linear

Fig. 1: Comparison of different loss-in-value functions.

Figure 1 compares our linear loss-in-value function to some of the functions
proposed in [1]. The comparison is performed in a network consisting of 60 nodes.
The horizontal axis shows the sizes of the components of the graph resulting from
the attack. Extreme values 0 and 60 correspond to intact networks, i.e., when
e 6∈ T . Values 0 < n < 60 correspond to a damaged network consisting of two
components of size n and 60 − n. The vertical axis measures the payoff of the
adversary or, equivalently, the loss of the operator. The previously proposed loss
functions are “normalized” in the manner described in [1]: each loss function is
divided by the value of the intact network, which is determined by the corre-
sponding network value function. Our loss function is not based on a network
value function, but, since each node being separated causes a loss of value 1,
we can establish that the value of the intact network is the number of nodes
|V (G)|. Therefore, our linear loss function is “normalized” by dividing it with
the constant coefficient |V (G)|. The normalization allows us to make an unbiased
comparison between the different loss-in-value functions.

The figure shows that our linear loss function is bounded by the previously
proposed loss functions Metcalfe and BOT. The Metcalfe function measures a
special quadratic loss and is an upper bound of our function. The BOT function
measures a special logarithmic loss and is a lower bound of our function. For

the exact definitions and a discussion of these functions we refer the reader to
[1]. We can conclude that our linear loss function is at least as realistic as the
previously proposed functions.

Please recall that, to the best of our knowledge, there are no polynomial-
time algorithms known to compute the equilibria or the optimal strategies of
the games based on the above loss functions, except for the GWA function. For
further comparison between different loss functions, see Section 6.1.

4 Operator Strategy

In this section, we propose an operator strategy. Later, in Section 5, we show that
this strategy is optimal by proving that it attains the lowest possible expected
loss for the operator if the adversary is rational.

Definition 2 (Expected loss). The expected loss (or importance) of an edge
e ∈ E(G) in a given operator strategy α is the expected payoff of the pure adver-
sarial strategy targeting exclusively e, i.e.,

∑
T∈T αT · λ(T, e).

To obtain an optimal operator strategy, consider the following linear program:

Variables:

∀r ∈ V (G) : αr ∈ R≥0
∀r ∈ V (G) ∀{u, v} ∈ E(G) : fr(u, v), fr(v, u) ∈ R≥0

Objective:

maximize
∑

r∈V (G)

αr (3)

Constraints:

∀{u, v} ∈ E(G) :
∑

r∈V (G)

fr(u, v) + fr(v, u) ≤ 1 (4)

∀r ∈ V (G) ∀v ∈ V (G) \ {r} :
∑

{u,v}∈E(G)

fr(v, u)− fr(u, v) ≥ αr . (5)

Let h′(G) denote the optimal value of the above linear program.

The above linear program can be viewed as a special multi-commodity flow
problem: There is a commodity for every r ∈ V (G). For every commodity, r
is a sink and every other node is a source producing αr. For the commodity
consumed by r, the amount of flow from u to v is given by fr(u, v). Finally,
every edge has a capacity of 1.

Theorem 1. There is an operator strategy that achieves at most 1
h′(G) loss for

the operator (regardless of the strategy of the adversary).

Proof. Our goal is to find a distribution α such that

∀e ∈ E :
∑
T∈T

αTλ(T, e) ≤ 1

h′(G)
, (6)

i.e., the expected loss of every edge is at most 1
h′(G) . Equivalently, we have to

find weights α ≥ 0 such that

∀e ∈ E :
∑
T∈T

αTλ(T, e) ≤ 1 , (7)

i.e., the expected loss of every edge is at most one, and∑
T∈T

αT = h′(G) . (8)

Our proof is constructive and it is based on the following algorithm:

1. Solve the above LP.
2. For each r ∈ V (G),

– find a set of weighted spanning trees T 1
r , . . . , T

mr
r with a total weight of

αr that satisfies the constraint that the expected loss of each edge {u, v}
is less than or equal to fr(u, v) + fr(v, u) using the flow decomposition
algorithm proposed in [7]. The details of this algorithm can be found in
Appendix A.

We claim that the resulting set of spanning trees T 1
r , . . . , T

mr
r and corre-

sponding coefficients α1
r, . . . , α

mr
r as a strategy satisfy that the expected loss of

every edge is at most 1
h′(G) .

Firstly, we have

∀r ∈ V :

mr∑
i=1

αir = αr (9)

from the flow decomposition algorithm and∑
r∈V

αr = h′(G) (10)

by definition. Therefore, the total weight of the spanning trees is equal to h′(G).
Let λr(T, e) denote the number of nodes that are separated from r ∈ V (G)

in G[T \ e], i.e., the number of nodes that are not in the same component as r
in G[T \ e]. Then, we have

∀{u, v} ∈ E, r ∈ V :

mr∑
i=1

αirλr(T
i
r , {u, v}) ≤ fr(u, v) + fr(v, u) (11)

from the flow decomposition algorithm.

By definition, λ(T, e) ≤ λr(T, e) as λ(T, e) is the number of nodes in the
not larger component (or 0, if there is only one component). Since λ(T ir , e) ≤
λr(T

i
r , e),

∀{u, v} ∈ E :
∑
r∈V

mr∑
i=1

αirλ(T ir , {u, v}) ≤
∑
r∈V

fr(u, v) + fr(v, u) . (12)

We also have

∀{u, v} ∈ E :
∑
r∈V

fr(u, v) + fr(v, u) ≤ 1 (13)

from the definition of the LP. Therefore, the expected loss of every edge (LHS
of Equation 12)is at most 1. ut

The following theorem shows how efficient the above algorithm is:

Theorem 2. The operator strategy described in Theorem 1 can be computed in
strongly polynomial time and its support, i.e., the set of spanning trees that have
nonzero probability, consists of at most |V (G)| · |E(G)| spanning trees.

Proof. We show that both steps of the algorithm presented in the proof of The-
orem 1 can be performed in strongly polynomial time. In [9], a polynomial linear
programming algorithm was presented whose number of arithmetic steps de-
pends only on the size of the numbers in the constraint matrix. Since, in our
case, the constraint matrix consists of only values of −1, 0 and 1, the linear pro-
gramming problem can be solved in strongly polynomial time. It can be easily
verified that the flow decomposition algorithm also runs in strongly polynomial
time: Clearly, the number of arithmetic steps in every iteration (see Appendix
A) of the algorithm is polynomial. In [7], it was shown that there are at most
|E(G)| iterations. Since the algorithm has to be run once for every node, the
total number of iterations is at most |V (G)| · |E(G)|.

In [7], it was also shown shown that the support of the distribution produced
by the flow decomposition algorithm consists of at most |E(G)| spanning trees.
Since at most |V (G)| flows have to be decomposed, the support of the resulting
strategy has at most |V (G)| · |E(G)| spanning trees. ut

The first part of the theorem states that our algorithm is very efficient as
it is not only polynomial-time, but strongly polynomial-time, while the second
part of the theorem states that resulting strategy is surprisingly simple.

5 Adversarial Strategy

In this section, we propose an optimal adversarial strategy, which attains 1
h′(G)

expected payoff, regardless of the strategy of the operator. We have already
shown in the previous section that this is the best attainable payoff for the
adversary if the operator is rational.

Lemma 1. For every spanning tree T , there exists a spanning reverse arbores-
cence 4 such that

– the arborescence consists of the edges of T and
– each arc e ∈ T is directed such that its target is in the larger component of
G[T \ {e}] 5 .

uv w

W

Fig. 2: Illustration for the proof of Lemma 1.

Proof. Direct each edge e of T such that its target is not in the smaller component
ofG[T\{e}]. We have to prove that the result is indeed an arborescence, i.e., there
is no pair of arcs (u, v), (u,w) : u, v, w ∈ V (G), v 6= w. Assume that this is not
true: Let W denote the node set of the not smaller component of G[T \{(u,w)}].
Since W consists of the nodes of the larger component, |W ∪ {u}| > |V (G)|

2 . But
this leads to a contradiction as W ∪ {u} is a subset of the smaller component of
G[T \ {(u, v)}]. See Figure 2 for an illustration. ut

Now, consider the dual of the linear program introduced in the previous section:
Variables:

∀e ∈ E(G) : βe ∈ R≥0
∀r, v ∈ V (G), r 6= v : πr(v) ∈ R≥0

Objective:

minimize
∑

e∈E(G)

βe (14)

Constraints:

∀r ∈ V (G) :
∑

v∈V (G)\{r}

πr(v) ≥ 1 (15)

∀r ∈ V (G) ∀{u, v} ∈ E(G) : β{u,v} − πr(u) + πr(v) ≥ 0 (16)

∀r ∈ V (G) ∀{u, v} ∈ E(G) : β{u,v} + πr(u)− πr(v) ≥ 0 , (17)

where πr(r) ≡ 0 to simplify the equations.

4 A directed, rooted spanning tree in which all edges point to the root.
5 If the two components are of equal size, then the direction is arbitrary.

Variable π can be viewed as a set of |V (G)| potential functions, one for each
node r ∈ V (G). For every potential function πr, the potential difference between
two adjacent nodes connected by edge e is bounded by the edge weight βe.

The last two constraints can be written as

|πr(u)− πr(v)| ≤ β{u,v} . (18)

Clearly, the optimal value of the dual program is equal to the optimal value
h′(G) of the primal program.

Theorem 3. There is an adversarial strategy that achieves at least 1
h′(G) payoff

for the adversary (regardless of the strategy of the operator).

Proof. Our goal is to find a distribution β such that

∀T ∈ T :
∑

e∈E(T)

βeλ(T, e) ≥ 1

h′(G)
. (19)

Equivalently, we have to find weights β ≥ 0 such that

∀T ∈ T :
∑

e∈E(T)

βeλ(T, e) ≥ 1 (20)

and ∑
e∈E

βe = h′(G) . (21)

We claim that the weights βe of the optimal solution of the above dual linear
program are such. To prove this, let T be an arbitrary spanning tree and r be
the root of a reverse arborescence defined in Lemma 1. Then,∑

e∈E(T)

βeλ(T, e) =
∑

e∈E(T)

βeλr(T, e) (22)

=
∑

v∈V (G)\{r}

 ∑
e∈{edges of the (v, r) path in T}

βe

 (23)

≥
∑

v∈V (G)\{r}

πr(v) (24)

≥ 1 , (25)

where (22) holds by definition (see proof of Theorem 1). In (23), we used the
observation that λr(T, e) is the number of nodes v from which the path to r in
T contains e. (24) follows from Constraint 18 by applying it to every edge along
the path. Finally, (25) follows from Constraint 15. ut

Furthermore, the dual linear programming problem can be also solved in
strongly polynomial time as the constraint matrix consists of only values of
−1, 0 and 1. Thus, an optimal adversarial strategy can be obtained in strongly
polynomial time.

6 Nash Equilibria and Sets of Critical Edges

From Theorem 1 and Theorem 3, the following corollary directly follows:

Corollary 1. In every Nash equilibrium, the expected payoff for the adversary
(or the expected loss of the operator) is 1

h′(G) . The optimal operator and optimal

adversarial strategies form Nash equilibira of the game.

The higher the value of 1
h′(G) is, the more vulnerable the network is. Con-

sequently, h′(G) and 1
h′(G) can be used as measures of network robustness and

network vulnerability. From Theorem 2, it readily follows that these metrics can
be computed efficiently.

6.1 Sets of Critical Edges

Besides measuring the robustness of network topologies, the network blocking
game can be also used to identify critical edges that are likely to be attacked.
Formally, an edge is called critical if it is in the support of an optimal adversarial
strategy [5]. In this subsection, we make a comparison between the sets of critical
edges resulting from different loss-in-value functions.

(a) GWA (b) Reed (c) BOT, Metcalfe
and Linear

Fig. 3: The set of critical edges for different loss-in-value functions. Critical edges
are represented by dashed lines.

In [1], the proposed loss-in-value functions were compared using the example
network shown in Figure 3. For the sake of consistency, we use the same network
for our comparison. The sets of critical edges identified using the previously
proposed loss functions are taken from [1].

Figure 3a shows the set of critical edges identified using the simple indicator
function 1e∈T (termed GWA). The critical set consists exclusively of bridges,
edges whose removal disconnects the network. This can be explained by the fact
that the indicator function does not take into account the magnitude of the
damage; therefore, the adversary maximizes solely the probability of hitting the
spanning tree, regardless of the expected number of nodes cut off.

Figure 3b shows the set of critical edges identified using the Reed loss func-
tion. The set is similar to the one identified using the indicator function, but
contains only those bridges that cut off more than one node. This result is con-
sistent with Figure 1, which also shows that the Reed and the indicator functions
are similar, but that the Reed function also takes the magnitude of the damage
into account to some extent.

Finally, Figure 3c shows the set of critical edges identified using the BOT,
Metcalfe and our linear loss function. Again, the fact that these three functions
result in the same set is consistent with our earlier comparison based on Figure
1, which also showed that these functions are similar.

7 Properties of the Optimal Adversarial Strategies

In this section, we discuss properties of the optimal solutions of the dual problem.
These properties allow us to formulate the dual problem as a graph partitioning
problem at the end of this section. Please note that, since optimal strategies are
normalized optimal solutions, Lemma 3 and Lemma 5 can be applied to optimal
adversarial strategies as well.

For any β ∈ R|E(G)|
≥0 , let E(β) = {e ∈ E(G) : βe > 0}. Let the partitioning

defined by β be such that two nodes belong to the same partition iff there is a
path between them consisting exclusively of edges in E(G) \ E(β).

Lemma 2. Let V1, . . . , Vk be the partitioning defined by an optimal solution β∗

of the dual problem. If u, v ∈ Vi, then πr(u) = πr(v) for every r.

Proof. If u and v are connected by an edge e ∈ E(G) \ E(β∗), then πr(u) =
πr(v) as |πr(u) − πr(v)| ≤ β∗e = 0. If u and v are not connected by an edge,
then there has to be a path (u,w1), (w1, w2), . . . , (wl, v) consisting of edges in
E(G) \ E(β). Then, πr(u) = πr(w1) = πr(w2) = . . . = πr(wl) = πr(v) using the
same argument. ut

Lemma 3. If β∗ is an optimal solution of the dual problem, then every edge in
E(β∗) connects nodes from different partitions defined by β∗.

Proof. Assume that the claim of this lemma does not hold for a graph G and
an optimal solution β∗. Let e∗ ∈ E(β∗) be an edge that connects two nodes u, v
from the same partition. From Lemma 2, we have that πr(u) = πr(v) for every

r. Let β′ ∈ R|E(G)|
≥0 be the following vector: β′e = β∗e if e 6= e∗, and β′e = 0 if

e = e∗. Then,

– Constraint 18 of the dual problem is satisfied by β′, since 0 = |πr(u) −
πr(v)| ≤ β′e∗ = 0, and no other constraint depends on the value of β′e∗ .
Thus, β′ is a solution of the dual problem.

– The total weight of β′ is less than the total weight of β∗ as
∑
e∈E(G) β

′
e =(∑

e∈E(G) β
∗
e

)
− β∗e∗ .

Therefore, β∗ cannot be an optimal solution. ut

Lemma 4. Let V1, . . . , Vk be the partitioning defined by an optimal solution β∗

of the dual problem. If r, v ∈ Vi, then πr(v) = 0.

Proof. We have πr(r) = 0 by definition. From Lemma 2, we also have that
πr(v) = πr(r) as r and v are in the same partition. ut

Lemma 5. Let V1, . . . , Vk be the partitioning defined by an optimal solution β∗

of the dual problem and let E(Vi, Vj) denote the set of edges between Vi and Vj.
For every Vi and Vj, if e′, e′′ ∈ E(Vi, Vj), then β∗e′ = β∗e′′ .

Proof. Assume that the claim of this lemma does not hold for a graph G, an
optimal solution β∗ and a pair of edges e′ = (v′i, v

′
j), e

′′ = (v′′i , v
′′
j), i.e., β∗e′ > β∗e′′ .

From Lemma 2, we have that πr(v
′
i) = πr(v

′′
i) and πr(v

′
j) = πr(v

′′
j) for every r.

Therefore, |πr(v′i) − πr(v′j)| = |πr(v′′i) − πr(v′′j)| ≤ β∗e′′ . Let β′ ∈ R|E(G)|
≥0 be the

following vector: β′e = β∗e if e 6= e′, and β′e = β∗e′′ if e = e′. Then,

– Constraint 18 of the dual problem is satisfied by β′, since |πr(v′i)−πr(v′j)| ≤
β∗e′′ = β′e′ , and no other constraint depends on the value of β′e′ . Thus, β′ is
a solution of the dual problem.

– The total weight of β′ is less than the total weight of β∗ as it was decreased
by β∗e′ − β∗e′′ > 0.

Therefore, β∗ cannot be an optimal solution. ut

Lemma 6. There is an optimal solution of the dual problem such that if r, s ∈ Vi
then πr(v) = πs(v) for every v.

Proof. Let β∗ and π∗ be an optimal solution such that there exists a pair of
nodes r, s ∈ Vi that do not satisfy the constraint of the lemma, i.e, there exists
an v ∈ V (G) such that π∗r (v) 6= π∗s (v). Let π′ be the following potential function:
π′r = π∗s and π′u = π∗u if u 6= r. Since π∗s satisfies every constraint of the dual
problem, so does π′r; thus, π′ is also an optimal solution. By repeatedly applying
the above step, we can construct a solution that satisfies the constraint of the
lemma. ut

From the above lemmas, the following corollary directly follows:

Corollary 2. The dual problem is equivalent to the following optimization prob-
lem:

On every partition V1, . . . , Vk (k ≥ 2) of V (G) and every potential function
πVi(Vj) ≥ 0, ∀1 ≤ i, j ≤ k such that

∀i : πVi(Vi) = 0 , (26)

∀i :
∑

1≤j≤k

|Vj | · πVi
(Vj) ≥ 1 , (27)

minimize the objective function∑
1≤i<j≤k

|E(Vi, Vj)| · max
1≤r≤k

|πVr (Vi)− πVr (Vj)| , (28)

where E(Vi, Vj) is the set of edges between Vi and Vj.

Formulating the dual problem as a graph partitioning problem allows us to
prove Theorem 4 in Section 8, which shows that h′(G) is related to a graph-
theoretic metric.

8 Relation to the Cheeger Constant

In [5], it was shown that, in case of the simple loss-in-value function 1e∈T , the
payoff in every Nash equilibrium of the game is the reciprocal of the strength
of the network σ(G). In [7], it was shown that, in case of a natural loss-in-
value function for many-to-one networks, the payoff in every Nash equilibrium
is the reciprocal of the persistence of the network π(G). These results link the
graph-theoretic robustness of a network to game theory, which gives a better un-
derstanding of network robustness. The question naturally arises: can the above
computed equilibrium payoff 1

h′(G) be linked to an elementary graph metric? In

this section, we show that this is possible indeed by studying the relationship
between the equilibrium payoff 1

h′(G) and the Cheeger constant h(G).

In graph theory, the Cheeger constant [10,11] (also called edge expansion co-
efficient [12,13] or isoperimetric number [14,15]) of a graph is a measure of “bot-
tleneckedness”. It is related to the spectral (or eigenvalue) gap of graph by the
Cheeger inequalities and also has interesting applications, such as spectral clus-
tering [16].

Definition 3 (Cheeger constant). The Cheeger constant of a graph G, de-
noted by h(G), is

h(G) = min

{
|∂U |
|U |

: U ⊂ V (G), 0 < |U | ≤ |V (G)|
2

}
, (29)

where ∂U is the collection of all edges between U and V (G) \ U .

If h(G) is low, then there is a relatively small set of edges A that partitions
the graph into two connected components which are both relatively large, i.e.,
A is a “bottleneck”. The intuition is that these bottlenecks correspond to the
optimal attacks against a network. We will see that this is indeed true for many
graphs 6.

Theorem 4. For every graph G,

h′(G) ≤ h(G) . (30)

6 As a first example, we note that it is true for the network shown in Figure 3.

Proof. We show that the value of the optimization problem in Corollary 2, which
is equal to h′(G), is upper bounded by h(G). Consider a restricted optimization
problem, where the search space is restricted to partitions into two parts, de-
noted by V1 and V2. Since this is a minimization problem, the value of the
restricted problem is an upper bound of the value of the original problem. The
optimal values of the potential function are determined by the sizes of V1 and
V2: πV1

(V2) ≥ 1
|V2| and πV2

(V1) ≥ 1
|V1| . Without loss of generality, let |V1| ≤ |V2|.

Then, the value of the restricted optimization problem is

min
V1⊂V (G)

|E(V1, V2)| ·max{πV1(V2), πV2(V1)} (31)

= min
V1⊂V (G)

|E(V1, V2)| ·max{ 1

|V2|
,

1

|V1|
} (32)

= min
V1⊂V (G)

|E(V1, V2)| · 1

|V1|
(33)

= min
V1⊂V (G)

|δV1|
|V1|

(34)

= h(G) . (35)

Therefore, we have that
h′(G) ≤ h(G) . (36)

ut

The proof of the above theorem shows that the robustness metric h′(G) can
be interpreted as a possible “generalization” of the Cheeger constant to arbitrary
partitionings.

Theorem 5. There is a graph G such that h′(G) < h(G).

Proof. Consider the complete graph K3. It is easy to see, that the Cheeger
constant of K3 is h(K3) = 2. We now show that the adversary can achieve a
higher payoff than 1

h(K3)
= 1

2 . Let the strategy of the adversary be (1
3 ,

1
3 ,

1
3). In

any pure strategy of the operator, two edges are used and the expected loss of
both edges is 1, since one node is cut off by the removal of each edge; therefore,
the expected payoff is 1

3 · 1 + 1
3 · 1 + 1

3 · 0 = 2
3 . Since this is true for every pure

strategy of the operator, it is also true for every mixed strategy. ut

The following theorem shows that the bound is tight:

Theorem 6. There are an infinite number of graphs such that h′(G) = h(G).

Proof. Consider a complete graph K2n, n ∈ Z+. It is well-known that the
Cheeger constant of a complete graph K2n is h(K2n) = d 2n2 e = n. We now
show that h′(G) ≥ h(G) by describing an operator strategy that achieves 1

n ex-
pected payoff. Let the strategy of the operator be the uniform distribution on
the set consisting of every star subgraph S2n of K2n. There are 2n such stars;
therefore, the probability of each star is 1

2n . Each edge of the graph is contained

by two stars and the loss of an edge is 1 in both stars, since one node is cut off
by the removal of the edge in both stars. Thus, its expected loss is 2 · 1

2n · 1 = 1
n .

Since the expected loss every edge is 1
n , so is the expected payoff. ut

9 Generalization to Non-uniform Node Weights

By measuring the number of nodes that are cut off from the larger connected
component, we assume that each node is equally valuable or important. In prac-
tice, however, this assumption does not always hold. To relax this assumption, in
this section, we generalize our results to the case where nodes have non-uniform
value or importance, which can be represented by assigning a dv weight to each
node.

Let λ(T, e) measure the total weight of nodes that are separated from the
larger connected component of the network after the attack, i.e.,

λ(T, e) :=

{∑
v∈ smaller component of G[T\{e}] dv, if e ∈ T

0, if e 6∈ T .
(37)

In this model, an optimal operator strategy is given by the following linear
program:

Variables:

∀r ∈ V (G) : αr ∈ R≥0
∀r ∈ V (G) ∀{u, v} ∈ E(G) : fr(u, v), fr(v, u) ∈ R≥0

Objective:

maximize
∑

r∈V (G)

αr (38)

Constraints:

∀{u, v} ∈ E(G) :
∑

r∈V (G)

fr(u, v) + fr(v, u) ≤ 1 (39)

∀r ∈ V (G) ∀v ∈ V (G) \ {r} :
∑

{u,v}∈E(G)

fr(v, u)− fr(u, v) ≥ αr · dv (40)

and an appropriately modified flow decomposition algorithm. The details of this
modified algorithm can be found in Appendix A.1. Please note that the definition
of the function λr(T, e) is also modified appropriately: it measures the total
weight of nodes that are separated from r in G[T \ {e}].

An optimal adversarial strategy is given by the dual problem:
Variables:

∀e ∈ E(G) : βe ∈ R≥0
∀r, v ∈ V (G), r 6= v : πr(v) ∈ R≥0

Objective:

minimize
∑

e∈E(G)

βe (41)

Constraints:

∀r ∈ V (G) :
∑

v∈V (G)\{r}

πr(v) · dv ≥ 1 (42)

∀r ∈ V (G) ∀{u, v} ∈ E(G) : |πr(u)− πr(v)| ≤ β{u,v} . (43)

Otherwise, everything is the same. Since the proofs for this model can be
obtained by appropriately modifying the original proofs in a very straightforward
way, we omit them here.

10 Conclusions

In this paper, we introduced a linear loss-in-value function for the network block-
ing game. As one of our main contributions, we provided strongly polynomial-
time algorithms to compute optimal adversarial and operator strategies and,
thus, the payoff in the Nash equilibria of the game. To the best of our knowl-
edge, these are the first efficient algorithms for the network blocking game with a
loss-in-value function that is not too simplistic. The efficiency of these algorithms
allows us to measure the game-theoretic robustness of networks in practice. Fur-
thermore, the optimal strategies can be also used to identify critical edges that
are likely to be attacked. We also generalized our model to non-uniform node
weights, which allows nodes to have varying importance or value.

In addition, we proved that the payoff in the Nash equilibria of the game is
closely related to the Cheeger constant of a graph (also called minimum edge
expansion or isoperimetric number), a well-known metric in graph theory. There-
fore, the game-theoretic robustness metric resulting from the linear loss-in-value
function can be related to a graph-theoretic robustness notion.

Acknowledgements

This paper has been supported by HSN Lab, Budapest University of Technology
and Economics, http://www.hsnlab.hu. Levente Buttyán is supported by the
Hungarian Academy of Sciences through the funding of the Academic Research
Group on Information Systems (ID: 04-130). The work is also related to the in-
ternal project of the authors’ hosting institution on “Talent care and cultivation
in the scientific workshops of BME”, which is supported by the grant TÁMOP
- 4.2.2.B-10/1–2010-0009.

References

1. Gueye, A., Marbukh, V., Walrand, J.C.: Toward a metric for communication
network vulnerability to attacks: A game theoretic approach. In: Proc. of the

http://www.hsnlab.hu

3rd International ICST Conference on Game Theory for Networks. GameNets’12,
Vancouver, Canada (May 2012)

2. Cunningham, W.: Optimal attack and reinforcement of a network. Journal of the
ACM 32(3) (1985) 549–561

3. Bauer, D., Broersma, H., Schmeichel, E.: Toughness in graphs–a survey. Graphs
and Combinatorics 22(1) (2006) 1–35

4. Laszka, A., Buttyán, L., Szeszlér, D.: Optimal selection of sink nodes in wireless
sensor networks in adversarial environments. In: Proc. of the 12th IEEE Interna-
tional Symposium on a World of Wireless, Mobile and Multimedia. WoWMoM’11,
Lucca, Italy (June 2011) 1–6

5. Gueye, A., Walrand, J.C., Anantharam, V.: Design of network topology in an
adversarial environment. In: Proc. of the 1st International Conference on Decision
and Game Theory for Security. GameSec’10, Berlin, Germany (November 2010)
1–20

6. Gueye, A., Walrand, J.C., Anantharam, V.: A network topology design game: How
to choose communication links in an adversarial environment? In: Proc. of the
2nd International ICST Conference on Game Theory for Networks. GameNets’11,
Shanghai, China (April 2011)

7. Laszka, A., Szeszlér, D., Buttyán, L.: Game-theoretic robustness of many-to-one
networks. In: Proc. of the 3rd International ICST Conference on Game Theory for
Networks. GameNets’12, Vancouver, Canada (May 2012)

8. Schwartz, G., Amin, S., Gueye, A., Walrand, J.: Network design game with both
reliability and security failures. In: Proc. of the 49th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), IEEE (September 2011)
675–681

9. Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear pro-
grams. Operations Research 34(2) (1986) 250–256

10. Chung, F.R.K.: Spectral graph theory. Number 92 in CBMS Regional Conference
Series in Mathematics. American Mathematical Society, Providence, R.I. (1997)

11. Chung, F.R.K.: Laplacians and the Cheeger inequality for directed graphs. Annals
of Combinatorics 9(1) (2005) 1–19

12. Alon, N.: On the edge-expansion of graphs. Combinatorics, Probability and Com-
puting 6(2) (1997) 145–152

13. Alon, N.: Spectral techniques in graph algorithms. In: Proc. of the 3rd Latin
American Symposium on Theoretical Informatics, Campinas, Brazil (April 1998)
206–215

14. Mohar, B.: Isoperimetric numbers of graphs. Journal of Combinatorial Theory,
Series B 47(3) (1989) 274–291

15. Mohar, B.: Isoperimetric inequalities, growth, and the spectrum of graphs. Linear
Algebra and Its Applications 103 (1988) 119–131

16. Bühler, T., Hein, M.: Spectral clustering based on the graph p-Laplacian. In:
Proc. of the 26th Annual International Conference on Machine Learning. ICML’09,
Montreal, Canada (June 2009) 81–88

A Flow-decomposition Algorithm

We introduced our flow decomposition algorithm in [7]. To make this paper self-
contained, in this section, we give an overview of the algorithm. For a detailed
proof, see [7].

In Section 4, we used two non-negative flow variables for each undirected edge
to allow the summation of the absolute values of multiple flows in the linear
program. For simplicity, in the following description, we use a more classical
approach and replace each edge with two arcs facing opposite directions, each
arc having a single non-negative flow value.

Theorem 7. Given a graph G with a sink node r and a multi-source flow f 7

such that each v ∈ V (G) \ {r} node is a source producing α, there exist weights
αT , T ∈ T (G) such that

∑
T∈T (G) αT = α and ∀e ∈ E(G) :

∑
T∈T (G) αT ·

λr(T, e) ≤ f(e) 8 .

Proof. Our proof is constructive and it is based on the following algorithm:

1. Find a spanning reverse arborescence T rooted at r in G such that
– T only includes edges to which f assigns a positive flow amount and
– every edge is directed in the same way as the flow.

2. Calculate λr(T, e) for every e ∈ T .

3. Let αT := mine∈T
f(e)

λr(T,e)
.

4. For every e ∈ E(G), let f(e) := f(e)− αT · λr(T, e).
5. If the incoming flow assigned by f to r is greater than zero, then continue

from Step 1.
6. Let αT := 0 for every other spanning tree.

Before proving the correctness of the algorithm, we have to prove that Step
1 can be executed in each iteration, otherwise the algorithm would terminate
with an error. Obviously, if f is a network flow and the amount of outgoing flow
from every v ∈ V (G)\{r} is positive, there has to be a directed path from every
v ∈ V (G) \ {r} to r consisting of edges with positive flow amounts. Thus, we
have to show that the outgoing flow from every v ∈ V (G) \ {r} remains positive
as long as the incoming flow to r is positive.

For a v ∈ V (G) \ {r}, let Λv denote λr(T, eout), where eout is the outgoing
edge of v in T . Clearly, the sum of λr(T, ein) over all incoming edges ein ∈ E(G)
of v is Λv−1. Since the flow along every edge e is decreased by αT ·λr(T, e), the
sum of outgoing flows is decreased by αT · Λv. Similarly, the sum of incoming
flows is decreased by αT · (Λv − 1). Therefore, the net outgoing flow of v is
decreased by αT . Since the outgoing flow of every v is the same at the beginning
and it is decreased by the same amount in every iteration, they are decreased to
zero simultaneously.

Now, we can prove the correctness of the algorithm. First, we have to prove
that α is indeed a distribution. This is evident, as the amount of incoming flow
to r is decreased by αT (|V (G)| − 1) at every assignment, and the amount is
|V (G)| − 1 at the beginning and zero after the algorithm has finished; therefore,∑
T∈T αT = 1.

7 A multi-source flow is a network flow with a set of sources instead of only one source.
8 Please recall the definition of λr(T, e) from Section 4: it is the number of nodes that

are separated from r in G[T \ {e}].

Second, we have to prove that ∀e ∈ E(G) :
∑
T∈T (G) αT ·λr(T, e) ≤ f(e). At

every αT assignment, the flow along every edge is decreased by αT ·λr(T, e) and
it is never decreased to a negative value. Therefore

∑
T∈T αT · λr(T, e) ≤ f(e).

Finally, we show that the algorithm terminates after at most |E(G)| itera-
tions. In every iteration, the flow along at least on edge (i.e., along every edge

for which f(e)
λr(T,e)

is minimal) is decreased from a positive amount to zero. Since

there are |E(G)| edges, there can be at most |E(G)| iterations. ut

From the last paragraph of the proof, it also follows that the support of the
resulting distributions consists of at most |E(G)| spanning trees.

A.1 Flow-decomposition Algorithm with Non-uniform Node
Weights

The algorithm is fundamentally the same as in the case of uniform node weights.
The following modifications have to be made:

– Each v ∈ V (G) \ {r} node is a source producing α · dv, instead of α.
– Consequently,
• the sum of λr(T, ein) over all incoming edges ein ∈ E(G) of v is Λv−dv,

instead of Λv − 1,
• the net outgoing flow of v is decreased by αT · dv, instead of αT ,
• the incoming flow to r is decreased by αT

∑
v∈V (G)\{r} dv, instead of

αT (|V (G)| − 1).

	Linear Loss Function for the Network Blocking Game: An Efficient Model for Measuring Network Robustness and Link Criticality

