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Abstract. We analyze a two-player zero-sum game between a steganographer,
Alice, and a steganalyst, Eve. In this game, Alice wants to hide a secret mes-
sage of length k in a binary sequence, and Eve wants to detect whether a secret
message is present. The individual positions of all binary sequences are indepen-
dently distributed, but have different levels of predictability. Using knowledge of
this distribution, Alice randomizes over all possible size-k subsets of embedding
positions. Eve uses an optimal (possibly randomized) decision rule that considers
all positions, and incorporates knowledge of both the sequence distribution and
Alice’s embedding strategy.

Our model extends prior work by removing restrictions on Eve’s detection power.
We give defining formulas for each player’s best response strategy and minimax
strategy; and we present additional structural constraints on the game’s equilib-
ria. For the special case of length-two binary sequences, we compute explicit
equilibria and provide numerical illustrations.
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1 Introduction

In steganography, the objective of a steganographer is to hide a secret message in a
communication channel. The objective of her counterpart, the steganalyst, is to detect
whether the channel contains a message [29]]. Digital multimedia, such as JPEG images,
are the most commonly studied communication channels in this context; but the theory
can be applied more generally to any data stream having some irrelevant components
and an inherent source of randomness [10].

In contrast to random uniform embedding, where the steganographer chooses her
message-hiding positions along a pseudo-random path through the communication chan-
nel, content-adaptive steganography leverages the fact that different parts of a commu-
nication channel may have different levels of predictability [2,4]. All content-adaptive
embedding schemes have in common that they try to identify less predictable embed-
ding positions. These schemes can be roughly divided into locally calculated criteria
and distortion minimizing criteria. An example for the first category is the assumption
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that areas with a high local variance are more suitable, e.g., [13]]. The second category
assumes that embedding positions introducing less distortion are preferable, e.g., [15].
The claimed purpose of all adaptivity criteria is to identify a (partial) ordering of all
available embedding positions according to their suitability for embedding.

For example, digital images often have areas of homogeneous color where any slight
modification would be noticed, whereas other areas are heterogeneous in color so that
subtle changes to a few pixels would still appear natural. It follows that if a steganog-
rapher wants to modify image pixels to communicate a message, she should prefer to
embed in these heterogeneous areas.

Our model abstracts this concept of content-adaptivity, by considering a communi-
cation channel as a random variable over binary sequences, where each position in the
sequence has a different level of predictability. The predictability of each position is ob-
servable by both Alice, a content-adaptive steganographer, and Eve, a computationally-
unbounded steganalyst; and we apply a game-theoretic analysis to determine each play-
er’s optimal strategy for embedding and detection, respectively.

We show that if Alice changes exactly k bits of a binary cover sequence, then Eve’s
best-response strategy can be expressed as a multilinear polynomial inequality of de-
gree k in the sequence position variables. In particular, when k£ = 1, this polynomial
inequality is a linear aggregation formula similar to what is typically used in practi-
cal steganalysis, e.g., [11]. Conversely, given any strategy by Eve to separate cover
and stego objects, Alice has a best-response strategy that minimizes a relatively-simple
summation over Eve’s strategic choices. We give formulas for both players’ minimax
strategies, and explain why the straightforward linear programming solution for com-
puting these strategies is not efficiently implementable for realistic problem sizes. We
give structural constraints to the players’ equilibrium strategies; and in the case where
there are only two embedding positions, we classify all equilibria, resolving an open
question from [31]]. Furthermore, we bridge the two research areas of game-theoretic
approaches and information-theoretic optimal steganalysis, and conjecture that the main
results of earlier works still hold when the steganalyst is conservatively powerful.

The rest of the paper is organized as follows. In Section |2} we briefly review related
work. In Section 3} we describe the details of our game-theoretic model. Section
contains our analysis of the general case; and in Section [5} we compute and illustrate
the game’s equilibria for the special case of sequences of length two. We conclude the
paper in Section[6]

2 Related work

Game theory is a mathematical framework to investigate competition between strate-
gic players with contrary goals [34]. Game theory gains more and more importance in
practically all areas concerned with security ranging from abstract models of security
investment decisions [14,/17] to diverse applied scenarios such as the scheduling of pa-
trols at airports [[30]], the modeling of Phishing strategies [6]], network defense [23[], and
team building in the face of a possible insider threat [22].

The application of game theory has also found consideration in the various subdis-
ciplines of information hiding including research on covert channels [[16], anonymity



Adaptive Steganography and Steganalysis 3

[[1], watermarking [24] and, of course, steganographym Similarly, game-theoretic ap-
proaches can be found in the area of multimedia forensics [3}33].

In content-adaptive steganography [4], where Alice chooses the positions into which
she embeds a message and Eve tries to anticipate these positions to better detect the
embedding, the situation is naturally modeled using game theory.

Practical content-adaptive steganography schemes, on the other hand, have typically
relied primarily on the notion of unpredictability to enhance the security of embedded
messages. In fact, the early content-adaptive schemes not only preferred less predictable
areas of images, but restricted all embedding changes to the least predictable areas,
e. g., [9]. Prior works examining adaptive embedding have dubbed this strategy naive
adaptive embedding, and have shown it to be a non-optimal strategy in progressively
more general settings [5,[18,31]. It was shown in [5]] that the steganalyst can leverage
her knowledge about the specific adaptive embedding algorithm from [9]] to detect it
with better accuracy than even random uniform embedding. In [31]] it was shown for
the first time that, if the steganalyst is strategic, it is never optimal for the steganogra-
pher to deterministically embed in the least predictable positions. The game-theoretic
analysis in [31] was restricted to a model with two embedding positions, where Eve
could only look in one position. A subsequent extension of that model [[18]] allowed the
steganographer to change multiple bits in an arbitrary-sized cover sequence, but main-
tained limiting restrictions on the power of the steganalyst, by requiring her to make
decisions on the basis of only one position. Another extension generalizes the model by
introducing a non-uniform cost of steganalysis and models the problem as a quasi-zero-
sum game [21].

Another extension of this research stream expanded the power of Eve but required
Alice to embed independently in each position [32]]. Other authors have studied steganog-
raphy using game-theoretical models. In 1998, Ettinger [|8] proposed a two-player, zero-
sum game between a steganographer and an active steganalyst whose purpose it is to
interrupt the steganographic communication; Ker [20] uses game theory to find strate-
gies in the special case of batch steganography, where the payload can be spread over
many cover objects. The steganalyst anticipates this and tries to detect the existence
of any secret message (so-called pooled steganalysis); and Orsdemir et al. [26] frame
the competition between steganographer and steganalyst with the help of set theory.
The steganographer has the possibility to use either a naive or a sophisticated strategy,
where in the sophisticated strategy she incorporates statistical indistinguishability con-
straints. By this they devise a meta-game. The only other game-theoretical approach
that is also concerned with content-adaptive embedding, the most common approach in
modern steganography, e. g., [12,28]], is [7]]. Here, the authors examine the embedding
operation of LSB matching with a content-adaptive embedding strategy and a multi-
variate Gaussian cover model.

This work directly extends [[19], which first introduced the game theoretic model
studied in this paper. Compared to that work, we have added several new results con-
straining the game’s equilibrium strategies. First, we give formal constraints determin-
ing when the game admits or does not admit trivial equilibria. We use these constraints
to show that under the non-trivial conditions, Alice can affect her payoff by changing

! See [27] for an introduction to the area of information hiding.
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her embedding strategy at key positions. Finally, we use these structural results to prove
that under relatively general conditions, it is not optimal against an adaptive classifier
to naively embed in the least biased positions. As an additional contribution, we give
a constructive proof that our simplified representation of Eve’s mixed strategy is a sur-
jective reduction.

3 Game-Theoretic Model

To describe our game-theoretic model, we specify the set of players, the set of states
that the world can be in, the set of choices available to the players, and the set of conse-
quences as a result of these choices. Because our game is a randomized extension of a
deterministic game, we first present the structure of the deterministic game, and follow
up afterwards with details of the randomization.

3.1 Players

The players are Alice, a steganographer, and Eve, a steganalyst. Alice wants to send a
message through a communication channel, and Eve wants to detect whether the chan-
nel contains a message. At times, we find it convenient to also mention Nature, the force
causing random variables to take realizations, and Bob, the message recipient; although
Nature and Bob are not players in a game-theoretic sense because they are not strategic.

3.2 Events

Our event space (2 is the set {0, 1} x {C, S}. An event consists of two parts: a binary
sequence z € {0, 1}"V and a steganographic state y € {C, S}, where C stands for cover
and S for stego. The binary sequence represents what Eve observes on the communi-
cation channel. The steganographic state tells whether or not a message is embedded
in the sequence. In the randomized game, neither of these two states is known by the
players until after they make their choices. To define payoffs for the finite game, we
simply assume that some event has been chosen by Nature so that the world is in some
fixed state (z,y).

Figure [1]illustrates an event with player interaction as a block diagram. Following
the diagram, Alice embeds a secret message of length k into the binary sequence z;
Nature determines whether the original cover or the modified stego object appears on
the communication channel; Eve observes the sequence appearing on the channel and
makes a decision as to whether or not it contains a message; and (not relevant to our
analysis but useful for narrative closure) Bob extracts the message, if it happened to be
there.

3.3 Choices

Alice’s (pure strategy) choice is to select a size-k subset I of {0,..., N — 1}, which
represents the positions into which she embeds her encoded message, by flipping the
value of the given sequence at each of the positions in .
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secret area {cover, stego}

Fig. 1. Block diagram of a steganographic communication system

Eve’s (pure strategy) choice is to select a subset Eg of {0, 1}, which represents
the set of sequences that she classifies as stego objects (i.e., sequences containing a
secret message). Objects in E¢ := {0,1}" \ Ej are classified as cover objects (i.e.,
sequences not containing a secret message).

3.4 Consequences

Suppose that Alice chooses a pure strategy I C {0,..., N — 1}, Eve chooses a pure
strategy F's C {0,1}%, and Nature chooses a binary sequence = and a steganographic
state y. Then, Eve wins 1 if she classifies = correctly (i.e., either she says stego and
Nature chose stego, or she says cover and Nature chose cover), and she loses 1 if her
classification is wrong. The game is zero-sum so that Alice’s payoff is the negative of
Eve’s payoff. Table|l|formalizes the possible outcomes as a zero-sum payoff matrixE]

Table 1. Payoffs for (Eve, Alice)

steganographic state

Eve’s decision for x C S
x € Ec ( L-)(-1, 1
r € Fg (-1, 1)( 1,-1)

3.5 Randomization

In the full randomized game, we have distributions on binary sequences and stegano-
graphic states. We also have randomization in the players’ strategies. To describe the
nature of the randomness, we start by defining two random variables on our event space

% The payoff matrix and the zero sum property might be different if false positives and false
negatives result in different profits, respectively losses.



6 Johnson, Schéttle, Laszka, Grossklags and Bohme

2. Let X : 2 — {0,1}" be the random variable which takes an event to its binary
sequence and let Y : 2 — {C, S} be the random variable which takes an event to its
steganographic state. We proceed through the rest of this section by first describing the
structure of the distribution on {2; next describing the two players’ mixed strategies;
and finally, by giving the players’ payoffs as a consequence of their mixed strategies.

Steganographic States The event Y = .S happens when Nature chooses the stegano-
graphic state to be stego; and this event occurs with probability ps. We also define
PrglY = C) := pc = 1 — pg. From Eve’s perspective, pg is the prior probability that
she observes a stego sequence on the communication channel. A common convention
in steganography (following a similar convention in cryptography) is to equate the prior
probabilities po and pg of the two steganographic states, so that Eve observes a stego
sequence with exactly 50% probability. Our results describing equilibria for this model
carry through with arbitrary prior probabilities; so we retain the notations pg and p¢ in
several subsequent formulas. Note however, that with highly unequal priors, the game
may trivialize because the prior probabilities can dominate other incentives. For this
reason, we do require equal priors for some structural theorems; and we also use equal
priors in our numerical illustrations.

Binary Sequences The distribution on binary sequences depends on the value of the
steganographic state. If Y = (|, then the steganographic state is cover, and X is dis-
tributed according to a cover distribution C; if Y = S, then the steganographic state is
stego, and X is distributed according to a stego distribution S.

With this notation in hand, we may define, for any event (X = z,Y = y):

Pro[(z,y)] = Pro[Y = y] - Pro[X = z|Y =]

_Jpc - Pre[X =a] ify=C 0
"~ \ps - Prs[X =x2] ify=3S5.

We will define the distributions C and S after describing the players’ mixed strate-
gies.

Players’ Mixed Strategies We next describe the mixed strategy choices for Alice and
Eve. Recall that a mixed strategy is a probability distribution over pure strategies.

In a mixed strategy, Alice can probabilistically embed into any given subset of po-
sitions, by choosing a probability distribution over size-k subsets of {0,..., N —1}. To
describe a mixed strategy, foreach I C {0, ..., N —1}, we let a; denote the probability
that Alice embeds into each of the positions in I.

A mixed strategy for Eve is a probability distribution over subsets of {0, 1}*. Sup-
pose that Eve’s mixed strategy assigns probability es to each subset S C {0, 1}¥.
Overloading notation slightly, we define e : {0, 1}" — [0, 1] via

e(z) = Zes ) 2)

5C{0,1}N:zes
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Each e(z) gives the total probability for the binary sequence z that Eve classifies the
sequence x as stego. Note that this “projected” representation of Eve’s mixed strategy
given in Equation (2)) requires specifying 2V real numbers, whereas the canonical repre-
sentation of her mixed strategy using the notation eg would require specifying 22" real
numbers. For this reason, we prefer to use the projection representation. Fortunately,
the projected representation contains enough information to determine both players’
payoffs, because it determines the classifier’s success rates. In the reverse direction, we
may also construct a true mixed strategy from a reduced representation, as evidenced
by the subsequent lemma.

Reduced Representation of Eve’s Mixed Strategy The following lemma shows that
the mapping from the canonical representation of Eve’s mixed strategy to the projected
representation is surjective, so we may express results using the simpler representation
without loss of generality.

Lemma 1. For every function e : {0,1} s [0,1], there exists a distribution eg,
S C {0, 1}V, satisfying Equation ().

Proof. We prove the above lemma using a constructive proof. More specifically, we
provide an algorithm that can compute an appropriate distribution eg, S C {0, 1}¥,
from an arbitrary function e : {0, 1}V ~ [0, 1]. First, order the sequences by their e(z)
values in a non-increasing order, and denote them z!, 22, ..., 22" (i.e., without loss of
generality, assume e(z!) > e(z2) > ... > e(2?")). Second, assign probabilities to
subsets of sequences as follows. Let the first subset of sequences be S° = {}, and let
its probability be ego = 1 — e(x!). Next, let the second subset be S1 = {1}, and let
its probability be eg1 = e(x!) — e(2?). Then, let the third subset be S? = {x! 22}
and its probability be eg2 = e(x?) — e(23). Similarly, let the (k + 1)th subset be
Sk = {z% 22, ... 2¥}, and let its probability be egr = e(z*) — e(z**1). Finally, let
the last subset be §2° = {a!, 22, ...,2%" }, and let itts probability be e g,n = e(z2" ).

We have to show that the output of the algorithm 1) is a distribution (i.e., the prob-
abilities sum up to one) and 2) satisfies Equation . First, the sum of the resulting
probabilities is

ego + egt + eg2 + ... —|—eS2N 3)
=1 —e(z') +e(z!) —e(x?) +e(z?) —e(@®) + ... + e(x2N) 4)
=1. &)
Second, for an arbitrary sequence z*, we have

9N
Z €g ZZ(ESL (6)
SCH{0,1}N : zkes =k

oN

—e(zh) —e(z) +e(aFTY) (@) + . e(@®) (D)
=e(z") . (®)
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Therefore, we have that the resulting distribution satisfies Equation (2]), which con-
cludes our proof. a

Note that the resulting distribution is relatively simple, since it assigns a non-zero
probability to at most N2 + 1 subsets only (and even less than that if some sequences
have zero e(x) values). It is easy to see that we cannot do any better than this generally,
in the sense that there exists an infinite number of e functions, for which no distribution
with a smaller support can exist.

Cover Distribution In the cover distribution C, the coordinates of X are independently
distributed so that

N—-1
Pre[X =a] = [ Pre[X; = zi]. )
1=0

The bits are not identically distributed however. For each i we have

Pre[X; = 1] = f;, (10)

2
sumption is without loss of generality because, in applying the abstraction of a commu-
nication channel into sequences, we can always flip O s and 1s to make 1s more likely;
and we can re-order the positions from least to most predictable.

where ( f2>fV;01 is a monotonically-increasing sequence from (1 1). Note that this as-

For notational convenience, we define

fi=2f—1. (11)

We construe f; as a measure of the bias of the predictability at position i. If the bias
at some position is close to zero, then the value of that position is not very predictable,
while if the bias is close to 1, the value of the position is very predictable.

Putting it all together, the cover distribution is defined by

Pre[X =z = [[ fi- [T(1=1£)

;=1 x;=0
N—-1 ~

= I = fitaifi). (12)
=0

Stego Distribution The stego distribution S depends on Alice’s choice of an embed-
ding strategy. Let I C {0,...,N — 1}, and for each = € {0,1}" let z; denote the
binary sequence obtained from x by flipping the bits at all the positions in I. The stego
distribution is obtained from the cover distribution by adjusting the likelihood that each
x occurs, assuming that for each I, with probability a; Alice flips the bits of x in all the
positions in I.
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More formally, suppose that Alice embeds into each subset I C {0,...,N — 1}
with probability a;. We then have

Prs[X Z&[ Pre[X = a7
= ZCL[ . HPI‘C X,' = a:i] . HPrc[Xi =1- in]
I i¢l iel
ZZGI'H(l—frHCz‘fi)'H(fi—l’z‘fi)- 13)
I i¢l iel

Player Payoffs In the full game, the expected payoff for Eve can be written as:

u(Eve) = Prp[X € EgandY = 5] (true positive)
+PrQ [X € EcandY = C] (true negative)
—Prgp[X € Esand Y = (] (false positive)
—Prp[X € EcandY = 5] (false negative) (14)

and this can be further computed as
u(Eve) = psPrs [X S Es} + pcPre [X S Ec] — pcPre [X S Es] — psPI‘g[X € Ec]
=> [ 2)psPrs(a) [ X = ]

z€{0,1}V
+ (1 —e(x))pcPre[X = z]
— (1 = e(x))psPrs(q)[X = ]

—e(x)pcPre[X = x]}

= (2¢(x) = 1) (psPrs(a)[X = 2] — pcPre[X = 2]). (15)
z€{0,1}V
The terms Pre[X = ] and Prg(q)[X = ] are defined in Equations (12) and (T3,

respectively. Note that we write S = S(a) to clarify that the distribution S depends on
Alice’s mixed strategy a.

In summary, Eve’s payoff is the probability that her classifier is correct minus the
probability that it is incorrect; and the game is zero-sum so that Alice’s payoff is exactly
the negative of Eve’s payoff.

4 Model Analysis

In this section, we present our analytical results. We begin by describing best response
strategies for each player. Next, we describe in formal notation the minimax strategies
for each player. Finally, we present several results which give structural constraints on
the game’s Nash equilibria.
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4.1 Best Responses

To compute best responses for Alice and Eve, we assume that the other player is playing
a fixed strategy, and determine the strategy for Alice (or Eve) which minimizes (or
maximizes) the payoff in Equation (I3)) as appropriate.

Alice’s Best Response Given a fixed strategy e for Eve, Alice’s goal is to minimize the
payoff in Equation (T3). However, since she has no control over the cover distribution
C, this goal can be simplified to that of minimizing

> (2e(x) = 1) - psPrs() [X = 2]

ze{0,1}V
=ps Z (2e(x) — 1)) - Z arPre[X = xg]
ze{0,1}V 1¢{o,...,N—1}

=ps >, ary_ (2e(z) = 1)) Pre[X =z] .

IC{0.....N—-1} ze{0,1}¥

This formula is linear in Alice’s choice variables, so she can minimize its value by
putting all her probability on the sum’s least element. A best response for Alice is thus
to play a pure strategy / that minimizes

> (2e(x) — 1)) - Pre[X = a]. (16)

z€{0,1}

Of course, several different / might simultaneously minimize this sum. In this case,
Alice’s best response strategy space may also include a mixed strategy that distributes
her embedding probabilities randomly among such 1.

Eve’s Best Response Given a fixed strategy for Alice, Eve’s goal is to maximize her
payoff as given in Equation (I3). So, for each x, she should choose e(x) to maximize
the term of the sum corresponding to x. Specifically, if psPrg(q)[X = 2] —pcPre[X =
x] > 0, then the best choice is e(z) = 1; and if the strict inequality is reversed, then the
best choice is e(x) = 0. If the inequality is an equality, then Eve may choose any value
for e(z) € [0, 1] and still be playing a best response.

Formally, her optimal decision rule is

.o Pro[y=5|x=x]
1 f Proy=C|x=x] >1,
e(x) =10 if Pro[Y=S|X=a] (17)

if Proly=5|X=a2] 1

[

%
Proly=C|X=x]

[
Proly=C|X=xz] —
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For a fixed sequence z, the condition for classifying = as stego can be rewritten as:

[
1 PI‘Q[Y = C|X = ZL’]
7PI‘Q[X = I] PI‘_Q[Y = S|X = l‘}
TPro[X =a] ProY =C|X = 4]
_PIQ[Y = S] PI‘Q[X = ;C|Y = S]
_PI'_Q[Y =C . PI'_Q[X = x|Y = C]
piPrS[X = z]
pe Pre[X = 1)
_Ps 2orar-Ilig (1 — fi +l’ifz‘) Tlier (f xzfz)
be | i (1*fi+ﬂ%f¢)
pS x1fz
el ()
_ps i
bo 2" E( - ﬁ-(l—ﬁ-))‘ {19

Note that Eve’s decision rule is written as a multilinear polynomial inequality of
degree at most k in the binary sequence x, and that the number of terms in the formula
is (N ) When £ is a constant relative to N (as it typically is in practical applications),

then ( ) is polynomial in NV, and Eve’s optimal decision rule can be applied for each
binary sequence in time that is polynomial in the length of the sequence.

4.2 Minimax Strategies

A minimax strategy in a two-player game is a mixed strategy of one player that max-
imizes her payoff assuming that the other player is going to respond with an optimal
pure strategy [34].

Eve’s minimax strategy is given by

argmax (Inlin (Z(Qe(x) — 1)(psPre[X = x5] — pcPre[X = x]))), (19)
© ze{0,1}V
while Alice’s minimax strategy is given by

argmin [ max ( Z (psPrs)[X = 2] — pcPre[X = x])
@ Bs zeEs

+ Z (pcprc [X = a?] - pSPrS(a) [X = x]))) . (20)

zebc
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Each minimax strategy can be determined (recursively) as the solution to a linear
program involving the payoff matrix for Alice’s and Eve’s pure strategies. Unfortu-
nately, Eve’s pure strategy space has size 22" soiitis computationally intractable to find
the minimax strategies using this method even for N = 5.

4.3 Nash Equilibria

In this subsection, we present structural constraints for Nash equilibria [25]. We be-
gin with a lemma giving natural conditions under which Eve’s classifier must respect
the canonical partial ordering on binary sequences. It shows that the classifier must es-
sentially divide the set of all binary sequences into low and high, with high sequences
classified as cover and low sequences classified as stego. Then, we give specific con-
straints on the distribution priors relative to the position biases that determine whether
or not the game admits trivial equilibria — in which Eve’s classifier is constant for all
binary sequences. If either the priors are too imbalanced, or the position biases are too
small, then the game will admit such trivial equilibria. In more prototypical parameter
regions, however, the game does not admit trivial equilibria. Next, we show that when
Eve’s classifier is non-trivial, Alice can affect the outcome of Eve’s detector, and hence
her own payoff by changing her embedding probability for one position in the sequence.
Finally, we show that in the non-trivial equilibrium setting, it is not optimal for Alice to
embed naively in only the least biased positions.

Sequence Ordering in Eve’s Equilibrium Strategy

Lemma 2. Define a partial ordering on {0, 1} byx < z iffx; < z;fori =0,..., N—
Land x; < z; for at least one i. Then whenever Alice’s embedding strategy satisfies the
constraint g—g Yorar[lier (117]” - %ﬁ) = 1 for the sequence z, the following
condition holds:

— If Eve classifies x as stego and z < z, then Eve classifies z as stego too.
— If Eve classifies x as cover and x < z, then Eve classifies z as cover too.

Proof. Suppose Eve classifies = as stego. Then from the conditions on Eve’s best re-

sponse (Equations and (I8)), we have that 22 > ar [ [, (% - xzﬁ> >
1; and by the hypothesis of the lemma, the inequality is strict. Suppose z < x. Then the
value of g—g Yorarllier (% - zzﬁ> is at least the value of the same expres-

sion with z replacing z. So this value is also greater than 1, and so Eve also classifies z
as stego. The proof of the reverse direction is analogous. a

This lemma implies that in any Nash equilibrium, the set of all binary sequences can
be divided into three disjoint sets, low sequences which Eve’s likelihood test proscribes
a clear value of stego, high sequences which Eve’s test proscribes as clearly cover, and
a small set of mid-level boundary sequences on which Eve’s behavior is not obviously
constrained. Furthermore, changing Os to 1s in a clearly-cover sequence keeps it cover,
and changing 1s to Os in a clearly-stego sequence keeps it stego.
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Constraints on Parameters to Guarantee Nontrivial Equilibria Next we give a key
parameter constraint on the prior probabilities of cover and stego that determines the
complexity of equilibrium strategies for both players. Essentially if the priors are too
far apart relative to the sequence position biases, then the game admits trivial equilibria
— in which Eve’s classifier is constant; while if they are sufficiently close together then
it does not.

Lemma 3. Suppose that

—fi _
< 21
H i ps H 1- fz

Then in any equilibrium, Eve classifies 0V as stego and 1V as cover.

Moreover, if either inequality is reversed strictly, then there exists an equilibrium
in which Alice plays a pure strategy of the form I = {0, ...,k — 1} (naive adaptive
embedding), and Eve’s classifier is constant.

Proof. Since ( fi>712\;61 is monotonically increasing, we have that for any size-k subset
I1C{0,...N -1},

k-1
};[1 f S];[ glffz Hl*fz (22)

Consequently, for any mixed strategy (ar) {0, ,N—1} of Alice, we have

]-_fz i fz
Z“IH H 7 and Hl_f_Zafﬂl_fi. (23)

el el

The above, together with Equation (2I)) now implies that for any (ar) ;- {0, . N—1}

By wll < By ull

el el

Using Eve’s decision rule from Equation (T8), the left inequality above implies that
Eve’s best response strategy for the sequence 17 is to classify it as cover. The right
inequality implies that Eve’s best response to the sequence 0% is to classify it as stego.

If the first inequality is reversed strictly, then

k—1
p—SHI_fi>1

bc i i

So if Alice embeds in exactly the positions 0, ...,k — 1, then Eve’s best response (see
Equation (I8)) will classify 1%V as stego; and since her decision inequality is strict, by
Lemma 2] she will classify all sequences as stego. In this circumstance, the payoff for
Alice is independent of her strategy. Thus both players are playing a best response, and
the strategy configuration is an equilibrium.
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Similarly, if the second inequality is reversed strictly, then

Ps
Hl_fz

So if Alice embeds in exactly the positions O, . ..,k — 1, then Eve’s best response will
classify OV as cover; and again by Lemma [2| she will classify all sequences as cover.
Again Alice has no incentive to change her strategy, and this configuration is an equi-
librium. a

Impact of Alice’s Strategy on a Nontrivial Classifier The next result shows explicitly
that if Eve’s classifier is non-trivial, then there is a sequence = and a position ¢ that
witnesses a change from stego to cover depending only on that position. We use this
lemma as a tool for allowing Alice to change her payoff by adjusting her strategy in
response to a fixed classifier.

Lemma 4. Suppose that Eve classifies 0N as stego and 1V as cover. Then there exists
at least one position i and a sequence x such that x; = 0 and Eve classifies x as stego
(with some positive probability), but when the value of x at position 1 is flipped to 1,
then Eve classifies the modified sequence as cover.

Proof. Starting with 0V, flip the bit in each position sequentially from position 0 to N —
1 until after IV steps, the sequence becomes 1V. Since Eve says stego at the beginning,
and cover by the end, there must be a step at which she changes from (probably) stego
to cover. The sequence x at this step, and position ¢ at this step serve as witnesses to the
lemma’s claim. a

Exclusion of Naive Adaptive Embedding Strategies Our last equilibrium result com-
bines the previous lemmas to show that under relatively mild constraints on the game’s
parameters, there is no equilibrium in which Alice embeds in exactly the k least bi-
ased positions. This result compares well with a result from [[19] which showed the
same property for a steganography game in which Eve’s observational power was more
restricted.

The first constraint for the theorem says only that the priors for the stego and cover
distributions are not too imbalanced, in comparison to the position biases. The second
constraint says that the parameters do not naturally make Eve indifferent on sequence
classification against pure strategies. This constraint is satisfied if, for example, the
position biases are drawn randomly from a continuous distribution; and it is used only to
avoid navigating the logic of pathological cases in which Eve’s classifier acts arbitrarily
when her likelihood test is inconclusive.

Theorem 1. Suppose that k < N and the following conditions hold:
1.

1-f
H fz p H ]-_fz (24)

S
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k—1

VzE{O,l}N,ZZjZE(zilfifi+(l—xi)lfifi> #1. (25)

Then there does not exist an equilibrium in which Alice embeds in exactly the k least
biased positions.

Proof. Suppose by way of contradiction, that Alice plays a pure strategy by embedding
in positions 0, ...,k — 1, and that the strategy configuration is an equilibrium. Since
Eve is playing a best response to Alice, she classifies an input x as stego whenever

k-1
bs 11—/ o fi )
pC 11 (x2 fi ta :Cz)l _fi> 0

=0

and classifies  as cover when the inequality (for z) is reversed. The inequality is never
an equality by assumption, so that Eve’s decision is necessarily determined by the bi-
nary values of x at positions 0, ...,k — 1.

Note that since £k < N, Alice is not embedding in position N — 1; and Eve’s
classifier does not depend on position N — 1.

By Lemma [3| Eve classifies 07V as stego and 17V as cover; so by Lemma 4] there
is a position i € {0,...,k — 1} and sequence = € {0,1}*V such that z; = 0 and Eve
classifies x as stego, but when z; is flipped to 1, Eve classifies the resulting sequence as
cover.

Let J be the set I ~ {i} U {N — 1}; and suppose Alice changes her pure strategy
from [ to J. Let Prg(p)[X = z] denote the probability of the sequence = appearing on
the communication channel in the stego distribution under the original strategy I, and
let Prg(y[X = x] denote the same probability under Alice’s new strategy .J. Our goal
is now to show that

Z PTs(J)[X:$]< Z PTs(])[sz].

z:e(x)=1 z:e(x)=1

Let us group all sequences according to their values on positions other than ¢ and
N — 1. For a binary sequence z € {0,1}", we write z as 2w where z € {0,1}V 2
records the N —2 binary values of x for positions other than ¢ or N —1; and w records the
binary values of z at positions ¢ and N — 1. Let X, and X, denote the random variables
associated with the respective parts of the sequence x, and let .S, and S, denote the
stego distributions restricted to the parts of the sequence z and w respectively.

Now let z be any sequence that Eve classifies as stego, so that e(z) = 1. We assume
for now that z (the components of x at positions other than ¢ and N — 1) is fixed. Since
the conditions of Lemma [2] are satisfied, increasing x at position ¢ can only move the
classifier from stego to cover, or leave it the same. Moreover, changing x in position
N — 1 does not affect Eve’s classifier at all. Given that Eve classifies x as stego, there
are only two possible cases. Either

1. Eve classifies all four sequences zw with w € {00, 10,01, 11}, as stego, or
2. Eve classifies exactly the two sequences zw with w € {00, 01} as stego.
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In the first case, the change in strategy from I to J does not change the value of

Z PrglX = zuw],

{w:e(zw)=1}
since for fixed z,
Z PTS(J)[X = zw| = Z PTs([)[X = zw).
we{00,10,01,11} we{00,10,01,11}

In the second case, however, the probabilities of stego sequences differ.
In the case of the original distribution I, we have

Z Prg[X = 2]
we{00,10}

= PTS(I)[X = ZOO] + PT‘s([) [X = 210]
= Prg. (X = 2] - (Prs, (i) [Xw = 00] + Prg, ) [Xw = 01])

:Prsz(l)[Xzzz].( fi  1-fv—a fi fnaa )

1—-fi  fyvoa +1_fi.1—fN—1

Cfi a0 fv)?
1—fi  fvo1(l—=fyoa)

while in the case of the modified distribution J, we have

= PTSZ(J) [Xz = Z]

Z Prgp[X = z2u]
we{00,10}

— Pr.()[X. = 2] - (Pre, [ Xu = 00] + Prs, () [X, = 01])
= Prg )[X. = 2] (1 fl_fl : 1?\;;71 41 fifl - foNl‘1>

1—fi R+ —fnaa)?
fi o fnal=faoy)

1—f; fRoa+ (1= fn-1)?
i fvi(T—fna)

1-£\°
= (ﬂ) Z Prgn[X = zw]
we{00,10}

< Z PrgnX = zw).
we{00,10}

= PTSZ(J) [XZ = Z]

= PTSZ(I)[XZ = Z]

By Lemmad] this second case must occur for at least one stego sequence z; there-
fore, summing over all « with e(x) = 1 and grouping these x according to their z
components, we see that the total probability of stego sequences

Z Prs[X = .13}

z:ie(z)=1
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is smaller under the distribution S(.J) than under the distribution S(I). Thus Alice can
strictly increase her payoff in the game by changing her strategy; and so the configura-
tion is not an equilibrium. a

The theorem shows that if the game has non-trivializing parameter conditions, then
it is not optimal for Alice to use only the least biased positions. Rather, she should also
use additional positions that may not be taken into consideration by Eve. We conjec-
ture an even stronger result holds — namely that Alice must actually use all N of the
positions — under additional reasonable and precise parameter constraints. Two avenues
for pursuing this conjecture include formulating more restrictive constraints that avoid
navigating Eve’s indeterminate actions on boundary sequences, or examining Eve’s al-
lowable equilibrium actions on boundary sequences more directly. We leave the precise
statement and proof of this conjecture for future work.

In the following section, we explicitly compute all equilibria in the case of length-
two sequences and an embedding size of k = 1.

5 Numerical Illustration

In this section, we instantiate our model with the special case of flipping a single bit
(k = 1) in sequences of length two (/N = 2). In this setting, Alice’s pure strategy space
is {{0},{1}}; and since a(;}; = 1 — a{g}, her mixed strategy space can be represented
by a single value ag = ayoy € [0, 1]. Eve’s pure strategy space is represented by the set
of all [0, 1]-valued functions on {(J), (9). (5), (1)} Throughout this section we assume
that cover and stego objects are equally likely, i.e., pc = ps = % Notice that the
assumption of equal priors implies the conditions from Equation ZI)) which guarantee

only non-trivial equilibria.

5.1 Alice’s Minimax Strategy

To compute Alice’s minimax strategy, we first divide Alice’s strategy space into three
regions based on Eve’s best response:

Lemma 5. The following table gives Eve’s best response for each sequence x as a
function of ay.

Alice’s strategy Eve’s best response
€r=

0y [0y (1 1

W () ) ()

ag < 0, S C S C

01 < ag < 0y s S S C

0y <agl S S C C

where 01 = Scilj}ol)fi and 0 = foig‘){lfl'

Proof. We prove Eve’s optimal decision for the four realizations separately.
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(3): Eve always classifies (J) as stego.

wi-()-

(1= fo)(X = f1) < aofo(l — f1) + (1 —ao)(l - fo)fi
0
B
since (1 — fo)(1 = f1) < fo(1 — f1) and (1 = fo)(1 — f1) < (1 — fo) f1-

(—fo)fr ._ i
fotfi—1 = 71

(%): Eve classifies ({) as cover when ag <

wlo=()

(1 - fo)f1 ; aofofi + (1 —ao)(1 = fo)(1 = f1)

r 5= )

(1= fo)(fr =1+ f1) > ao(fofr — 1+ fo+ f1 — fof1)

L f
d-fofr a
fot fi—1

(}): Eve classifies ({) as cover when ag > foiojf}_l = 0.

()

fol = 1) > ao(1 = fo)(1 — f1) + (1 — ag) fofs

[ (1) .

fo(L = f1) = fofr > ao(1 = fo — f1 + fof1 — fofr)
—fofa
1—fo—f1

¢

< ap

1
1

()

fofr > ao(1 — fo)f1 + (1 —ao)fo(1 — f1)

e [ (0)]

since fof1 > (1 — fo)f1and fof1 > fo(1— f1).

G) Eve always classifies ( ) as cover.
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Finally, 6; < 0 always holds, since (1 — fo) < fo. O
Theorem 2. The strategy (02,1 — 63) is a minimax strategy for Alice.

Proof. First, for each region, we compute the derivative of Alice’s payoff as a function
of ag given that Eve always uses her best response. Then, we have that Alice’s payoff is

— strictly increasing when ag < 61,
— strictly decreasing when ag > 65,
— and, when 6; < ag < 65, it is strictly increasing if fy # f1, and it is constant if

fO = f1~

Thus, we have that ag = 65 always attains the maximum. O

Note that embedding uniformly into both positions (ag = %) is optimal only if
the biases are uniform (fo = f1); and embedding only in the first position would be
optimal only if the bias of the first position were zero (fo = 0) or if the bias of the
second position were one (f; = 1). This confirms the results from [31], which also
considers a two position game but allows Eve to look at only one position.

Pr Pr

1 ao 2 91 ao 2
(a) fo = 0.77 f1 =0.7 (b) f() = 0.77 f1 =0.8

Fig. 2. Eve’s false positive rate (dashed line), false negative rate (dotted line) and her overall
misclassification rate (solid line) as a function of a1, assuming that Eve plays a best response to
Alice.

Figure [2] depicts Eve’s error rates and the resulting overall misclassification rate
as a function of Alice’s strategy (ag,1 — ag). Figure shows a homogeneous f,
while Figure 2(b)|shows a heterogeneous f. It can be seen that neither the false positive
rate (dashed line) nor the false negative rate (dotted line) is continuous and that the
discontinuities occur at the points #; and 6s, the points where Eve changes her optimal
decision rule. Nonetheless, the overall misclassification rate (solid line) is continuous,
which leads to the conclusion that this rate leverages out the discontinuities and thus is
a good measure of the overall accuracy of Eve’s detector.
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5.2 [Eve’s Minimax Strategy

.. . 0 0
Theorem 3. Eve’s minimax strategy €minimaz IS €minimaz (0) = e,nimmm( ) =1,

1
Eminimax G) = O; and

o n_ fo
€minimax (O) =p= fo +7f1 1 . (26)

Proof. Since the game is zero sum, Eve’s strategy is a minimax strategy if Alice’s min-
imax strategy is a best response to it [34]]. Therefore, it suffices to show that Alice has
no incentives for deviating from her own minimax strategy when Eve uses €,inimaz-
Alice’s best response to €inimaz 15

] s [ = ()] - [ = (7))
+ (1= 2p)Prs(a,) [X - (é)] * Prstao) [X B G)] }

= argmax { —aofo(1 — f1) = (1 = a0)(1 = fo) fy

ap€[0,1]
—aopfofi — (1 —ao)(1 = fo)(1 — f1)
+ (1 =2p)[ao(1 = fo)(1 = f1) + (1 = ao) fof1]

+ao(1 = fo) 1 + (1 = a0) fo(1 = 1)}

= argmax {ao 2—4fo—2p(1— fo— f1)]+ const(f,p)} .
ap€[0,1]

Ifp = %, then the value of the above optimization problem does not depend on

ao. Consequently, Alice has no incentives for deviating from her minimax strategy. O

It follows immediately from the theorem that Eve’s minimax decision function is
deterministic if and only if the cover is homogeneous (fy = f1). This is interesting from
the perspective of practical steganography, as all practical detectors are deterministic
although embedding functions are pseudo-random and covers are heterogeneous.

6 Conclusion

We analyzed a two-player game between Alice, a content-adaptive steganographer, and
Eve, an unbounded steganalyst. In keeping with a strict application of Kerckhoffs’ prin-
ciple to steganography, we allowed Eve access to Alice’s embedding strategy, the cover
source distribution, and unbounded computational power. Under these assumptions,
we formalized processes both for constructing an optimal content-adaptive embedding
strategy under the assumption of an optimal classifier, and for constructing an optimal
detector under the assumption of an optimal embedding strategy.
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Our formalism applies to arbitrary-sized cover sequences, although implementing
the formalism for large covers remains a computational challenge. For the special case
of a two-bit cover sequence, we exemplified an optimal classifier/embedding pair, and
illustrated its structure in terms of the classification error rates.

For the practical steganalyst, our results give direction to the optimal detection of
strategic embedding, and for optimal embedding against a strategic detector. In partic-
ular, Eve’s optimal classifier should be monotone in the cover’s predictability metric;
and Alice’s optimal adaptive embedding strategy should not naively use only the least
biased positions. We also showed that a deterministic classifier can be sub-optimal for
covers with heterogeneous predictability.

In our detailed analysis of length-two cover sequences, Alice’s optimal randomized
embedding strategy changed each part of the cover with some positive probability, and
with more sophisticated structural constraints on the game’s parameters, we expect that
an analogous result can be proven for larger covers. It remains for future work to prove
this conjecture and more directly address the computational tractability of implement-
ing optimal strategies.
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